2 research outputs found

    Physical Background for Luminescence Thermometry Sensors Based on Pr3+:LaF3 Crystalline Particles

    No full text
    The main goal of this study was creating multifunctional nanoparticles based on rare-earth doped LaF3 nanocrystals, which can be used as fluorescence thermal sensors operating over the 80–320 K temperature range including physiological temperature range (10–50°C). The Pr3+:LaF3 (CPr = 1%) microcrystalline powder and the Pr3+:LaF3 (CPr = 12%, 20%) nanoparticles were studied. It was proved that all the samples were capable of thermal sensing into the temperature range from 80 to 320 K. It was revealed that the mechanisms of temperature sensitivity for the microcrystalline powder and the nanoparticles are different. In the powder, the 3P1 and 3P0 states of Pr3+ ion share their electronic populations according to the Boltzmann and thermalization of the 3P1 state takes place. In the nanoparticles, two temperature dependent mechanisms were suggested: energy migration within 3P0 state in the temperature range from 80 K to 200 K followed by quenching of 3P0 state by OH groups at higher temperatures. The values of the relative sensitivities for the Pr3+:LaF3 (CPr = 1%) microcrystalline powder and the Pr3+:LaF3 (CPr = 12%, 20%) nanoparticles into the physiological temperature range (at 45°C) were 1, 0.5, and 0.3% °C−1, respectively

    Langmuir Monolayers and Thin Films of Amphifilic Thiacalix[4]arenes. Properties and Matrix for the Immobilization of Cytochrome <i>c</i>

    No full text
    Formation and properties of Langmuir films of thiacalix[4]­arene (TCA) derivatives containing N-donor groups on the lower rim (YO­(CH<sub>2</sub>)<sub>3</sub>CN; OCH<sub>2</sub>CN; NH<sub>2</sub>; OCH<sub>2</sub>ArCN-<i>p</i>) in <i>1</i>,<i>3</i>-<i>alternate</i> conformation on aqueous subphase and solid substrates have been studied. Only <i>tetra</i>-cyanopropoxy-<i>p</i>-<i>tert</i>-butylthiacalix­[4]­arene <b>1</b> forms a typical monomolecular layer with perpendicular orientation of the macrocycle relative to the water–air interface that is able to immobilize cytochrome <i>c</i> in the entire range of the surface pressure. Obtained monolayers were transferred by Langmuir–Schaefer technique onto quartz, indium–tin oxide (ITO), and silicon. It was demonstrated that protein activity is retained after immobilization on the substrate
    corecore