138 research outputs found

    NMR detection with an atomic magnetometer

    Full text link
    We demonstrate detection of NMR signals using a non-cryogenic atomic magnetometer and describe several novel applications of this technique. A water free induction decay (FID) signal in a 0.5 μ\muT field is detected using a spin-exchange-relaxation-free K magnetometer and the possibility of using a multi-channel magnetometer for 3-D MRI requiring only a single FID signal is described. We also demonstrate detection of less than 101310^{13} 129^{129}Xe atoms whose NMR signal is enhanced by a factor of 540 due to Fermi-contact interaction with K atoms. This technique allows detection of less than 10910^{9} 129^{129}Xe spins in a flowing system suitable for remote NMR applications

    High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings

    Full text link
    Antirelaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling faster diffusion of the alkali atoms throughout the cell and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas and with minimal quenching gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of antirelaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free atomic magnetometer with sensitivity of 6 fT/sqrt(Hz) and magnetic linewidth as narrow as 2 Hz.Comment: 8 pages, 5 figures. The following article appeared in Journal of Applied Physics and may be found at http://link.aip.org/link/?jap/106/11490

    Sub-femtotesla scalar atomic magnetometer using multipass cells

    Full text link
    Scalar atomic magnetometers have many attractive features but their sensitivity has been relatively poor. We describe a Rb scalar gradiometer using two multi-pass optical cells. We use a pump-probe measurement scheme to suppress spin-exchange relaxation and two probe pulses to find the spin precession zero crossing times with a resolution of 1 psec. We realize magnetic field sensitivity of 0.54 fT/Hz1/2^{1/2}, which improves by an order of magnitude the best scalar magnetometer sensitivity and surpasses the quantum limit set by spin-exchange collisions for a scalar magnetometer with the same measurement volume operating in a continuous regime.Comment: 5 pages, 4 figure

    Correlation function of spin noise due to atomic diffusion

    Full text link
    We use paramagnetic Faraday rotation to study spin noise spectrum from unpolarized Rb vapor in a tightly focused probe beam in the presence of N2_2 buffer gas. We derive an analytical form for the diffusion component of the spin noise time-correlation function in a Gaussian probe beam. We also obtain analytical forms for the frequency spectrum of the spin noise in the limit of a tightly focused or a collimated Gaussian beam in the presence of diffusion. In particular, we find that in a tightly focused probe beam the spectral lineshape can be independent of the buffer gas pressure. Experimentally, we find good agreement between the calculated and measured spin noise spectra for N2_2 gas pressures ranging from 56 to 820 torr.Comment: 6 pages, 4 figure

    Non-linear amplification of small spin precession using long range dipolar interactions

    Full text link
    In measurements of small signals using spin precession the precession angle usually grows linearly in time. We show that non-linear interactions between particles can lead to an exponentially growing spin precession angle, resulting in an amplification of small signals and raising them above the noise level of a detection system. We demonstrate amplification by a factor of greater than 8 of a spin precession signal due to a small magnetic field gradient in a spherical cell filled with hyperpolarized liquid 129^{129}Xe. This technique can improve the sensitivity in many measurements that are limited by the noise of the detection system, rather then the fundamental spin-projection noise.Comment: 4 pages, 4 figure

    Stroboscopic back-action evasion in a dense alkali-metal vapor

    Full text link
    We explore experimentally quantum non-demolition (QND) measurements of atomic spin in a hot potassium vapor in the presence of spin-exchange relaxation. We demonstrate a new technique for back-action evasion by stroboscopic modulation of the probe light. With this technique we study spin noise as a function of polarization for atoms with spin greater than 1/2 and obtain good agreement with a simple theoretical model. We point that in a system with fast spin-exchange, where the spin relaxation rate is changing with time, it is possible to improve the long-term sensitivity of atomic magnetometry by using QND measurements

    Limits on new long range nuclear spin-dependent forces set with a K-3He co-magnetometer

    Full text link
    A magnetometer using spin-polarized K and 3^3He atoms occupying the same volume is used to search for anomalous nuclear spin-dependent forces generated by a separate 3^3He spin source. We measure changes in the 3^3He spin precession frequency with a resolution of 18 pHz and constrain anomalous spin forces between neutrons to be less than 2×10−82 \times 10^{-8} of their magnetic or less than 2×10−32\times 10^{-3} of their gravitational interactions on a length scale of 50 cm. We present new limits on neutron coupling to light pseudoscalar and vector particles, including torsion, and constraints on recently proposed models involving unparticles and spontaneous breaking of Lorentz symmetry.Comment: 4 pages, 4 figures, latest version as appeared in PR
    • …
    corecore