Antirelaxation surface coatings allow long spin relaxation times in
alkali-metal cells without buffer gas, enabling faster diffusion of the alkali
atoms throughout the cell and giving larger signals due to narrower optical
linewidths. Effective coatings were previously unavailable for operation at
temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can
allow potassium or rubidium atoms to experience hundreds of collisions with the
cell surface before depolarizing, and that an OTS coating remains effective up
to about 170 C for both potassium and rubidium. We consider the experimental
concerns of operating without buffer gas and with minimal quenching gas at high
vapor density, studying the stricter need for effective quenching of excited
atoms and deriving the optical rotation signal shape for atoms with resolved
hyperfine structure in the spin-temperature regime. As an example of a
high-temperature application of antirelaxation coated alkali vapor cells, we
operate a spin-exchange relaxation-free atomic magnetometer with sensitivity of
6 fT/sqrt(Hz) and magnetic linewidth as narrow as 2 Hz.Comment: 8 pages, 5 figures. The following article appeared in Journal of
Applied Physics and may be found at http://link.aip.org/link/?jap/106/11490