5 research outputs found

    How to Peel a Million: Validating and Expanding Bitcoin Clusters

    Full text link
    One of the defining features of Bitcoin and the thousands of cryptocurrencies that have been derived from it is a globally visible transaction ledger. While Bitcoin uses pseudonyms as a way to hide the identity of its participants, a long line of research has demonstrated that Bitcoin is not anonymous. This has been perhaps best exemplified by the development of clustering heuristics, which have in turn given rise to the ability to track the flow of bitcoins as they are sent from one entity to another. In this paper, we design a new heuristic that is designed to track a certain type of flow, called a peel chain, that represents many transactions performed by the same entity; in doing this, we implicitly cluster these transactions and their associated pseudonyms together. We then use this heuristic to both validate and expand the results of existing clustering heuristics. We also develop a machine learning-based validation method and, using a ground-truth dataset, evaluate all our approaches and compare them with the state of the art. Ultimately, our goal is to not only enable more powerful tracking techniques but also call attention to the limits of anonymity in these systems

    Microdosimetric GEANT4 and FLUKA Monte Carlo simulations and measurements of heavy ion irradiation of silicon and tissue

    No full text
    We describe microdosimetric measurements and simulations with Geant4 and FLUKA Monte Carlo codes in silicon and tissue. Analyses of deposited energy in sensitive volumes of some micrometers were carried out after exposure to heavy ion radiatio

    Investigations on Photon Energy Response of RadFET Using Monte Carlo Simulations

    No full text
    International audienceWe describe investigations of RadFET energy response simulated with Geant4 and FLUKA2005 Monte Carlo codes. An analysis of energy deposition is carried out for photon irradiation with energies between 35 keV and 2 MeV. The absorbed dose in the silicon dioxide layer (few hundred nanometers) is compared for both transport codes

    MATSIM: Development of a Voxel Model of the MATROSHKA Astronaut Dosimetric Phantom

    No full text
    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center, to perform FLUKA Monte Carlo simulations of the MATROSHKA numerical phantom irradiated under reference radiation field conditions as well as for the radiation environment at the International Space Station (ISS). MATSIM is carried out as co-investigation of the ESA ELIPS projects SORD and RADIS (commonly known asMATROSHKA), an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. During MATSIM a computer tomography scan of the MATROSHKA phantom has been converted into a high resolution 3-dimensional voxel model. The energy imparted and absorbed dose distribution inside the model is determined for various radiation fields. The major goal of the MATSIM project is the validation of the numerical model under reference radiation conditions and further investigations under the radiation environment at ISS. In this report we compare depth dose distributions inside the phantom measured with thermoluminescence detectors (TLDs) and an ionization chamber with FLUKA Monte Carlo particle transport simulations due to Co-60 photon exposure. Further reference irradiations with neutrons, protons and heavy ions are planned. The fully validated numerical model MATSIM will provide a perfect tool to assess the radiation exposure to humans during current and future space missions to ISS, Moon, Mars and beyond
    corecore