300 research outputs found

    Free electron laser induced processes in thin molecular ice

    Get PDF
    Intermolecular reactions in and on icy films on silicate and carbonaceous grains constitute a major route for the formation of new molecular constituents in interstellar molecular clouds. In more diffuse regions and in protoplanetary discs, energetic radiation can trigger reaction routes far from thermal equilibrium. As an analog of interstellar icecovered dust grains, highly oriented pyrolytic graphite HOPG covered with D2O, NO, and H atoms is irradiated by ultrashort XUV pulses and the desorbing ionic and neutral products are analysed. The yields of several products show a nonlinear intensity dependence and thus enable the elucidation of reaction dynamics by two pulse correlated desorptio

    Backward correlations and dynamic heterogeneities: a computer study of ion dynamics

    Full text link
    We analyse the correlated back and forth dynamics and dynamic heterogeneities, i.e. the presence of fast and slow ions, for a lithium metasilicate system via computer simulations. For this purpose we define, in analogy to previous work in the field of glass transition, appropriate three-time correlation functions. They contain information about the dynamics during two successive time intervals. First we apply them to simple model systems in order to clarify their information content. Afterwards we use this formalism to analyse the lithium trajectories. A strong back-dragging effect is observed, which also fulfills the time-temperature superposition principle. Furthermore, it turns out that the back-dragging effect is long-ranged and exceeds the nearest neighbor position. In contrast, the strength of the dynamic heterogeneities does not fulfill the time-temperature superposition principle. The lower the temperature, the stronger the mobility difference between fast and slow ions. The results are then compared with the simple model systems considered here as well as with some lattice models of ion dynamics.Comment: 12 pages, 10 figure

    Ionization dynamics in expanding clusters studied by XUV pump probe spectroscopy

    Get PDF
    he expansion and disintegration dynamics of xenon clusters initiated by the ionization with femtosecond soft x ray extreme ultraviolet XUV pulses were studied with pump probe spectroscopy using the autocorrelator setup of the Free Electron LASer in Hamburg FLASH facility. The ionization by the first XUV pulse of 92 eV photon energy 8 1012 W cm amp; 8722;2 leads to the generation of a large number of quasi free electrons trapped by the space charge of the cluster ions. A temporally delayed, more intense probe 4 1013 W cm amp; 8722;2 pulse substantially increases a population of nanoplasma electrons providing a way of probing plasma states in the expanding cluster by tracing the average charge of fragment ions. The results of the study reveal a timescale for cluster expansion and disintegration, which depends essentially on the initial cluster size. The average charge state of fragment ions, and thus the cluster plasma changes significantly on a timescale of 1 3 p

    Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra

    Full text link
    Recent measurements on ion conducting glasses have revealed that conductivity spectra for various temperatures and ionic concentrations can be superimposed onto a common master curve by an appropriate rescaling of the conductivity and frequency. In order to understand the origin of the observed scaling behavior, we investigate by Monte Carlo simulations the diffusion of particles in a lattice with site energy disorder for a wide range of both temperatures and concentrations. While the model can account for the changes in ionic activation energies upon changing the concentration, it in general yields conductivity spectra that exhibit no scaling behavior. However, for typical concentrations and sufficiently low temperatures, a fairly good data collapse is obtained analogous to that found in experiment.Comment: 6 pages, 4 figure

    Matrix controlled channel diffusion of sodium in amorphous silica

    Full text link
    To find the origin of the diffusion channels observed in sodium-silicate glasses, we have performed classical molecular dynamics simulations of Na2_2O--4SiO2_2 during which the mass of the Si and O atoms has been multiplied by a tuning coefficient. We observe that the channels disappear and that the diffusive motion of the sodium atoms vanishes if this coefficient is larger than a threshold value. Above this threshold the vibrational states of the matrix are not compatible with those of the sodium ions. We interpret hence the decrease of the diffusion by the absence of resonance conditions.Comment: 5 pages, 4 figure

    Factors Affecting European Farmers’Participation in Biodiversity Policies

    Get PDF
    This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160 publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though clearly not sufficient condition in this process

    Channel diffusion of sodium in a silicate glass

    Full text link
    We use classical molecular dynamics simulations to study the dynamics of sodium atoms in amorphous Na2_2O-4SiO2_2. We find that the sodium trajectories form a well connected network of pockets and channels. Inside these channels the motion of the atoms is not cooperative but rather given by independent thermally activated hops of individual atoms between the pockets. By determining the probability that an atom returns to a given starting site, we show that such events are not important for the dynamics of this system.Comment: 10 pages of Latex, 5 figures, one figure added, text expande
    • …
    corecore