124 research outputs found

    Surface Geometry of 5D Black Holes and Black Rings

    Get PDF
    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector (`electromagnetic') field. The properties of the reduced black hole horizon and its embedding in \E^3 are briefly discussed.Comment: 10 pages, 9 figures, Revtex

    Advanced Data Analytics towards Energy Efficient and Emission Reduction Retrofit Technology Integration in Shipping

    Get PDF
    An overview of integrating two energy efficient and emission reduction technologies to improve ship energy efficiency under advanced data analytics is presented in this study. The proposed technologies consist of developing engine and propulsion innovations that will be experimented under laboratory conditions and large-model-scale sea trials, respectively. These experiments will collect large amount of data sets that will be used to quantify the performance of both innovations under the advanced data analytics framework (ADAF). Hence, extensive details on the ADAF along with preliminary data sets collected from a case study vessel are presented in this study

    Abelian BF theory and Turaev-Viro invariant

    Full text link
    The U(1) BF Quantum Field Theory is revisited in the light of Deligne-Beilinson Cohomology. We show how the U(1) Chern-Simons partition function is related to the BF one and how the latter on its turn coincides with an abelian Turaev-Viro invariant. Significant differences compared to the non-abelian case are highlighted.Comment: 47 pages and 6 figure

    Spherical structures on torus knots and links

    Full text link
    The present paper considers two infinite families of cone-manifolds endowed with spherical metric. The singular strata is either the torus knot t(2n+1,2){\rm t}(2n+1, 2) or the torus link t(2n,2){\rm t}(2n, 2). Domains of existence for a spherical metric are found in terms of cone angles and volume formul{\ae} are presented.Comment: 17 pages, 5 figures; typo

    Post Quantum Cryptography from Mutant Prime Knots

    Full text link
    By resorting to basic features of topological knot theory we propose a (classical) cryptographic protocol based on the `difficulty' of decomposing complex knots generated as connected sums of prime knots and their mutants. The scheme combines an asymmetric public key protocol with symmetric private ones and is intrinsecally secure against quantum eavesdropper attacks.Comment: 14 pages, 5 figure

    On the size of knots in ring polymers

    Full text link
    We give two different, statistically consistent definitions of the length l of a prime knot tied into a polymer ring. In the good solvent regime the polymer is modelled by a self avoiding polygon of N steps on cubic lattice and l is the number of steps over which the knot ``spreads'' in a given configuration. An analysis of extensive Monte Carlo data in equilibrium shows that the probability distribution of l as a function of N obeys a scaling of the form p(l,N) ~ l^(-c) f(l/N^D), with c ~ 1.25 and D ~ 1. Both D and c could be independent of knot type. As a consequence, the knot is weakly localized, i.e. ~ N^t, with t=2-c ~ 0.75. For a ring with fixed knot type, weak localization implies the existence of a peculiar characteristic length l^(nu) ~ N^(t nu). In the scaling ~ N^(nu) (nu ~0.58) of the radius of gyration of the whole ring, this length determines a leading power law correction which is much stronger than that found in the case of unrestricted topology. The existence of such correction is confirmed by an analysis of extensive Monte Carlo data for the radius of gyration. The collapsed regime is studied by introducing in the model sufficiently strong attractive interactions for nearest neighbor sites visited by the self-avoiding polygon. In this regime knot length determinations can be based on the entropic competition between two knotted loops separated by a slip link. These measurements enable us to conclude that each knot is delocalized (t ~ 1).Comment: 29 pages, 14 figure

    Quantum Knitting

    Get PDF
    We analyze the connections between the mathematical theory of knots and quantum physics by addressing a number of algorithmic questions related to both knots and braid groups. Knots can be distinguished by means of `knot invariants', among which the Jones polynomial plays a prominent role, since it can be associated with observables in topological quantum field theory. Although the problem of computing the Jones polynomial is intractable in the framework of classical complexity theory, it has been recently recognized that a quantum computer is capable of approximating it in an efficient way. The quantum algorithms discussed here represent a breakthrough for quantum computation, since approximating the Jones polynomial is actually a `universal problem', namely the hardest problem that a quantum computer can efficiently handle.Comment: 29 pages, 5 figures; to appear in Laser Journa

    The Combinatorics of Alternating Tangles: from theory to computerized enumeration

    Full text link
    We study the enumeration of alternating links and tangles, considered up to topological (flype) equivalences. A weight nn is given to each connected component, and in particular the limit n→0n\to 0 yields information about (alternating) knots. Using a finite renormalization scheme for an associated matrix model, we first reduce the task to that of enumerating planar tetravalent diagrams with two types of vertices (self-intersections and tangencies), where now the subtle issue of topological equivalences has been eliminated. The number of such diagrams with pp vertices scales as 12p12^p for p→∞p\to\infty. We next show how to efficiently enumerate these diagrams (in time ∼2.7p\sim 2.7^p) by using a transfer matrix method. We give results for various generating functions up to 22 crossings. We then comment on their large-order asymptotic behavior.Comment: proceedings European Summer School St-Petersburg 200
    • …
    corecore