63 research outputs found
Effects of temperature in relation to sheet metal stamping
The demand to reduce the use of lubricants and increase tool life in sheet metal stamping has resulted in increased research on the sliding contact between the tool and the sheet materials. Unlubricated sliding wear tests for soft carbon steel sliding on D2 tool steel were performed using a pin-on-disk tribometer. The results revealed that temperature has an influencing role in the wear of tool steel and that material transfer between tool and sheet can be minimized at a certain temperature range in sheet metal stamping
Temperature conditions during \u27cold\u27 sheet metal stamping
This paper investigates the friction and deformation-induced heating that occurs during the stamping of high strength sheet steels, under room temperature conditions. A thermo-mechanical finite element model of a typical plane strain stamping process was developed to understand the temperature conditions experienced within the die and blank material; and this was validated against experimental measurements. A high level of correlation was achieved between the finite element model and experimental data for a range of operating conditions and parameters. The model showed that the heat generated during realistic production conditions can result in high temperatures of up to 108 °C and 181 °C in the blank and die materials, respectively, for what was traditionally expected to be \u27cold\u27 forming conditions. It was identified that frictional heating was primarily responsible for the peak temperatures at the die surface, whilst the peak blank temperatures were caused by a combination of frictional and deformation induced heating. The results provide new insights into the local conditions within the blank and die, and are of direct relevance to sheet formability and tool wear performance during industrial stamping processes. © 2014 Elsevier B.V. All rights reserved
Acoustic Emission Characteristics of Galling Behavior from Dry Scratch Tests at Slow Sliding Speed
Galling wear, a severe form of wear, is a known problem in sheet metal forming. As the wear state is not directly observable in closed tribosystems, such as in industrial sheet metal forming processes, indirect tool wear monitoring techniques for inferring the wear state of the tool from suitable signal characteristics are the subject of intense research. The analysis of acoustic emissions is a promising technique for tool condition monitoring. This research has explored feature selection using t-tests, linear regression models, and cluster analysis of the data. This analysis has been conducted both with and without the inclusion of control variables, friction, and roughness to discriminate between the behavior of the acoustic emissions during different stages of galling wear. Scratch testing at slow sliding speed (1 mm/s) has been used to produce the galling wear between a tool steel indenter and aluminum sheet at 10 N applied load, for which the acoustic emissions were recorded. The bursts of the acoustic emission signal were processed and investigated to observe how the bursts changed with increasing galling damage (increasing material removal and transfer). Novel parameters in the field of galling wear have been identified, and novel models for observing the change in galling wear have been identified, thus furthering the development of acoustic emissions analysis as a non-invasive condition monitoring system, particularly for sheet metal forming processes
- …