48 research outputs found

    Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants

    Get PDF
    Direct oral anticoagulants (DOAC) have shown an upward prescribing trend in recent years due to favorable pharmacokinetics and pharmacodynamics without requirement for routine coagulation monitoring. However, recent studies have documented inter-individual variability in plasma drug levels of DOACs. Pharmacogenomics of DOACs is a relatively new area of research. There is a need to understand the role of pharmacogenomics in the interpatient variability of the four most commonly prescribed DOACs, namely dabigatran, rivaroxaban, apixaban, and edoxaban. We performed an extensive search of recently published research articles including clinical trials and in-vitro studies in PubMed, particularly those focusing on genetic loci, single nucleotide polymorphisms (SNPs), and DNA polymorphisms, and their effect on inter-individual variation of DOACs. Additionally, we also focused on commonly associated drug-drug interactions of DOACs. CES1 and ABCB1 SNPs are the most common documented genetic variants that contribute to alteration in peak and trough levels of dabigatran with demonstrated clinical impact. ABCB1 SNPs are implicated in alteration of plasma drug levels of rivaroxaban and apixaban. Studies conducted with factor Xa, ABCB1, SLCOB1, CYP2C9, and VKORC1 genetic variants did not reveal any significant association with plasma drug levels of edoxaban. Pharmacokinetic drug-drug interactions of dabigatran are mainly mediated by p-glycoprotein. Strong inhibitors and inducers of CYP3A4 and p-glycoprotein should be avoided in patients treated with rivaroxaban, apixaban, and edoxaban. We conclude that some of the inter-individual variability of DOACs can be attributed to alteration of genetic variants of gene loci and drug-drug interactions. Future research should be focused on exploring new genetic variants, their effect, and molecular mechanisms that contribute to alteration of plasma levels of DOACs

    Caffeine Consumption and Heart Rate and Blood Pressure Response to Regadenoson

    Get PDF
    BACKGROUND: Current guidelines recommend that caffeinated products should be avoided for at least 12 hours prior to regadenoson administration. We intended to examine the effect of caffeine consumption and of timing of last dose on hemodynamic effects after regadenoson administration for cardiac stress testing. METHODS: 332 subjects undergoing regadenoson stress testing were enrolled. Baseline characteristics, habits of coffee/caffeine exposure, baseline vital signs and change in heart rate, blood pressure, percent of maximal predicted heart rate, and percent change in heart rate were prospectively collected. RESULTS: Non-coffee drinkers (group 1) (73 subjects) and subjects who last drank coffee >24 hours (group 3) (139 subjects) prior to regadenoson did not demonstrate any difference in systolic blood pressure, heart rate change, maximal predicted heart rate and percent change in heart rate. Systolic blood pressure change (15.2±17.1 vs. 7.2±10.2 mmHg, p = 0.001), heart rate change (32.2±14 vs. 27.3±9.6 bpm, p = 0.038) and maximal predicted heart rate (65.5±15.6 vs. 60.7±8.6%, p = 0.038) were significantly higher in non-coffee drinkers (group 1) compared to those who drank coffee 12-24 hours prior (group 2) (108 subjects). Subjects who drank coffee >24 hours prior (group 3) exhibited higher systolic blood pressure change (13±15.8 vs. 7±10.2, p = 0.007), and heart rate change (32.1±15.3 vs. 27.3±9.6, p = 0.017) as compared to those who drank coffee 12-24 hours prior to testing (group 2). CONCLUSIONS: Caffeine exposure 12-24 hours prior to regadenoson administration attenuates the vasoactive effects of regadenoson, as evidenced by a blunted rise in heart rate and systolic blood pressure. These results suggest that caffeine exposure within 24 hours may reduce the effects of regadenoson administered for vasodilatory cardiac stress testing

    Impact of Routine Platelet Reactivity Testing with VerifyNow Assay on Antiplatelet Choice After Percutaneous Coronary Intervention

    Get PDF
    Background: High on-treatment ADP platelet reactivity (HPR) measured by VerifyNow P2Y12 assay (VN) is an established risk factor for ischemic events after percutaneous coronary intervention (PCI). We hypothesized that routine use of VN at time of PCI in clinical practice may affect choice of P2Y12 antiplatelet therapy at discharge. Methods: In a single center retrospective analysis, we examined the influence of VN testing on choice of P2Y12 inhibitor post PCI in routine clinical practice. Assessment of HPR was used routinely in clinical care during the time period of analysis at discretion of clinical providers. Subjects with PRU>208 after the loading dose of clopidogrel or during clopidogrel steady state were switched to alternate P2Y12 inhibitors. Results: We identified 1001 patients with PCI during the time period specified. A total of 252 subjects underwent VN testing. Among those, 43% were found to have HPR on clopidogrel and were switched to alternate therapies (prasugrel [n=60], ticagrelor [n=48]). Patients who had VN platelet function testing were more likely to be discharged on clopidogrel as compared to those who did not have VN assay done (57% vs. 50%, p=0.039). There was no significant difference in 1-year net-MACE (CVD, MI, stent thrombosis, BARC 2 or higher bleeding) using tailored antiplatelet therapy (VN testing) as compared to standard of care group (adjusted HR:0.92, 95% CI: 0.54-1.5, p=0.74). Conclusion: Routine use of VN assay in personalized antiplatelet treatment decision-making after PCI is associated with lower likelihood of using novel P2Y12 inhibitors

    Platelet Factor XIIIa Release During Platelet Aggregation and Plasma Clot Strength Measured by Thrombelastography in Patients with Coronary Artery Disease Treated with Clopidogrel.

    Get PDF
    It has been estimated that up to half of circulating Factor XIIIa (FXIIIa) is stored in platelets. The release of FXIIIa from platelets upon stimulation with ADP in patients with coronary artery disease treated with dual antiplatelet therapy has not been previously examined. Samples from 96 patients with established coronary artery disease treated with aspirin and clopidogrel were examined. Platelet aggregation was performed by light transmittance aggregometry (LTA) in platelet rich plasma (PRP) with platelet poor plasma (PPP) as reference and ADP 5μM as agonist. Kaolin activated TEG was performed in citrate PPP. PRP after aggregation was centrifuged and plasma supernatant (PSN) collected. FXIIIa was measured in PPP and PSN.Platelet aggregation after stimulation with ADP 5μM resulted in 24% additional FXIIIa release in PSN as compared to PPP (99.3 ± 27 vs. 80.3 ± 24 %, p<0.0001). FXIIIa concentration in PSN correlated with maximal plasma clot strength (TEG-G) (r=0.48, p<0.0001), but not in PPP (r=0.15, p=0.14). Increasing quartiles of platelet derived FXIIIa were associated with incrementally higher TEG-G (p=0.012). FXIIIa release was similar between clopidogrel responders and non-responders (p=0.18). In summary, platelets treated with aspirin and clopidogrel release a significant amount of FXIIIa upon aggregation by ADP. Platelet derived FXIIIa may contribute to differences in plasma TEG-G, and thus in part provide a mechanistic explanation for high clot strength observed as a consequence of platelet activation. Variability in clopidogrel response does not significantly influence FXIIIa release from platelets

    Common genetic polymorphisms of adenosine A2A receptor do not influence response to regadenoson

    Get PDF
    Aim: Hemodynamic response to regadenoson varies greatly, and underlying mechanisms for variability are poorly understood. We hypothesized that five common variants of adenosine A2A receptor (ADORA2A) are associated with altered response to regadenoson. Methods: Consecutive subjects (n = 357) undergoing resting regadenoson nuclear stress imaging were enrolled. Genotyping was performed using Taqman-based assays for rs5751862, rs2298383, rs3761422, rs2267076 and rs5751876. Results: There was no significant difference in heart rate or blood pressure between different genotypes following regadenoson administration. There was also no significant difference in myocardial ischemia detected by nuclear perfusion imaging as defined by summed difference score, or in self-reported side effects among the genotypes tested. Conclusion: The common A2A variants studied are not associated with variability in hemodynamic response to regadenoson or variability in detection of ischemia with nuclear perfusion stress imaging

    AMPD1 polymorphism and response to regadenoson

    Get PDF
    AIMS: AMPD1 c.34C > T (rs17602729) polymorphism results in AMPD1 deficiency. We examined the association of AMPD1 deficiency and variability of hemodynamic response to regadenoson. SUBJECTS & METHODS: Genotyping for c.34C>T was performed in 267 patients undergoing regadenoson cardiac stress testing. RESULTS: Carriers of c.34C >T variant exhibited higher relative changes in systolic blood pressure (SBP) compared with wild-type subjects ([%] SBP change to peak: 12 ± 25 vs 5 ± 13%; p = 0.01) ([%] SBP change to nadir: -3 ± 15 vs -7 ± 11%; p = 0.04). Change in heart rate was similar between groups, but side effects were more common in carriers of the variant (+LR = 4.2; p = 0.04). CONCLUSION: AMPD1 deficiency may be involved in the modulation of regadenoson's systemic effects

    Intensified P2Y12 inhibition for high-on treatment platelet reactivity

    Get PDF
    High on treatment platelet reactivity (HPR) during treatment with clopidogrel has been consistently found to be strong risk factor for recurrent ischemic events after percutaneous coronary intervention (PCI). Insufficient P2Y12 receptor inhibition contributes to HPR measured by the VerifyNow (VN) assay. Prasugrel and ticagrelor are more potent P2Y12 inhibitors than clopidogrel and commonly substituted for clopidogrel when HPR is documented, however benefit of VN guided intensified antiplatelet therapy is uncertain. We identified patients who had undergone platelet reactivity testing after PCI with VN after pretreatment with clopidogrel (n = 252) in a single center observational analysis. Patients who had HPR defined as PRU > 208 were switched to alternate P2Y12 inhibitors. Primary clinical endpoint was 1-year post PCI combined cardiovascular death, myocardial infarction (MI), and stent thrombosis. One hundred and eight (43%) subjects had HPR and were switched to prasugrel (n = 60) and ticagrelor (n = 48). Risk of recurrent 1-year primary endpoint remained higher for HPR patients switched to either ticagrelor or prasugrel as compared to subjects who had low on treatment platelet reactivity (n = 144) (LPR) on clopidogrel [Hazard Ratio: 3.5 (95% CI 1.1–11.1); p = 0.036)]. Propensity score matched analysis demonstrated higher event rates in patients with HPR on alternate P2Y12 inhibitor as compared to patients with LPR (log-rank: p = 0.044). The increased risk of recurrent events associated with HPR measured by VN is not completely attenuated by switching to more potent P2Y12 inhibitors. Non-P2Y12 mediated pathways likely contribute to increased incidence of thrombotic events after PCI in subjects with HPR

    Simultaneous administration of high-dose atorvastatin and clopidogrel does not interfere with platelet inhibition during percutaneous coronary intervention

    Get PDF
    BACKGROUND: Reloading with high-dose atorvastatin shortly before percutaneous coronary interventions (PCIs) has been proposed as a strategy to reduce periprocedural myonecrosis. There has been a concern that statins that are metabolized by cytochrome P450 3A4 may interfere with clopidogrel metabolism at high doses. The impact of simultaneous administration of high doses of atorvastatin and clopidogrel on the efficacy of platelet inhibition has not been established. METHODS: Subjects (n=60) were randomized to receive atorvastatin 80 mg together with clopidogrel 600 mg loading dose (n=28) versus clopidogrel 600 mg alone (n=32) at the time of PCI. Platelet aggregation was measured at baseline, 4 hours after clopidogrel loading dose, and 16-24 hours after clopidogrel loading dose by light transmittance aggregometry using adenosine diphosphate as agonist. RESULTS: Platelet aggregation was similar at baseline in both the atorvastatin and the control groups (adenosine diphosphate 10 µM: 57%±19% vs 61%±21%; P=0.52). There was no significant difference in platelet aggregation between the atorvastatin and the control groups at 4 hours (37%±18% vs 39%±21%; P=0.72) and 16-24 hours post-clopidogrel loading dose (35%±17% vs 37%±18%; P=0.75). No significant difference in incidence of periprocedural myonecrosis was observed between the atorvastatin and control groups (odds ratio: 1.02; 95% confidence interval 0.37-2.8). CONCLUSION: High-dose atorvastatin given simultaneously with clopidogrel loading dose at the time of PCI does not significantly alter platelet inhibition by clopidogrel. Statin reloading with high doses of atorvastatin at the time of PCI appears to be safe without adverse effects on platelet inhibition by clopidogrel (ClinicalTrials.gov: NCT00979940)
    corecore