8 research outputs found

    Magnetoresistance of a two-dimensional electron gas with spatially periodic lateral modulations: Exact consequences of Boltzmann's equation

    Full text link
    On the basis of Boltzmann's equation, and including anisotropic scattering in the collision operator, we investigate the effect of one-dimensional superlattices on two-dimensional electron systems. In addition to superlattices defined by static electric and magnetic fields, we consider mobility superlattices describing a spatially modulated density of scattering centers. We prove that magnetic and electric superlattices in xx-direction affect only the resistivity component ρxx\rho_{xx} if the mobility is homogeneous, whereas a mobility lattice in xx-direction in the absence of electric and magnetic modulations affects only ρyy\rho_{yy}. Solving Boltzmann's equation numerically, we calculate the positive magnetoresistance in weak magnetic fields and the Weiss oscillations in stronger fields within a unified approach.Comment: submitted to PR

    Guiding center picture of magnetoresistance oscillations in rectangular superlattices

    Full text link
    We calculate the magneto-resistivities of a two-dimensional electron gas subjected to a lateral superlattice (LSL) of rectangular symmetry within the guiding-center picture, which approximates the classical electron motion as a rapid cyclotron motion around a slowly drifting guiding center. We explicitly evaluate the velocity auto-correlation function along the trajectories of the guiding centers, which are equipotentials of a magnetic-field dependent effective LSL potential. The existence of closed equipotentials may lead to a suppression of the commensurability oscillations, if the mean free path and the LSL modulation potential are large enough. We present numerical and analytical results for this suppression, which allow, in contrast to previous quantum arguments, a classical explanation of similar suppression effects observed experimentally on square-symmetric LSL. Furthermore, for rectangular LSLs of lower symmetry they lead us to predict a strongly anisotropic resistance tensor, with high- and low-resistance directions which can be interchanged by tuning the externally applied magnetic field.Comment: 12 pages, 9 figure

    Anisotropic scattering and quantum magnetoresistivities of a periodically modulated 2D electron gas

    Full text link
    We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approximation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experiments.Comment: 19 pages, 8 figures, Revtex, to appear in Phys. Rev.

    Theory of Magneto--Acoustic Transport in Modulated Quantum Hall Systems Near Μ=1/2\nu=1/2

    Full text link
    Motivated by the experimental results of Willett et al [Phys.Rev. Lett., {\bf 78}, 4478 (1997)] we develop a magneto-transport theory for the response of a two dimensional electron gas (2DEG) in the Fractional Quantum Hall Regime near Landau level filling factor Μ=1/2\nu = 1/2 to the surface acoustic wave (SAW) in the presence of an added periodic density modulation. We assume there exists a Composite Fermion Fermi Surface (CF-FS) at Μ=1/2\nu = 1/2, and we show that the deformation of the (CF-FS) due to the density modulation can be at the origin of the observed transport anomalies for the experimental conditions. Our analysis is carried out particularly for the non-local case which corresponds to the SAW experiments. We introduce a new model of a deformed CF-FS. The model permits us to explain anomalous features of the response of the modulated 2DEG to the SAW near Μ=1/2:\nu = 1/2: namely the nonlinear wave vector dependence of the electron conductivity, the appearance of peaks in the SAW velocity shift and attenuation and the anisotropy of the effect, all of which originate from contributions to the conductivity tensor due to the regions of the CF-FS which are flattened by the applied modulation.Comment: 13 pages, 4 figures, the published versio

    Literatur

    No full text

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    No full text
    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle

    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

    No full text
    corecore