24 research outputs found

    Posturographic Analysis in Patients Affected by Central and Peripheral Visual Impairment

    Get PDF
    Abstract: Although vision loss is known to affect equilibrium maintenance, postural control in patients affected by low vision has been poorly investigated. We evaluated postural stability and the ability to use visual, proprioceptive and vestibular information in different low vision patterns. Ten adults with normal vision (NC), fourteen adults affected by central visual impairment (CLV) and eight adults affected by peripheral visual impairment (PLV) were enrolled in our study. Patients underwent visual, vestibular and postural evaluation (bedside examination, Computed Dynamic Posturograophy). Motor Control Tests were performed to analyze automatic postural adaptive re- sponses elicited by unexpected postural disturbances. Clinical evaluations did not show abnormality in all patients. In the Sensory Organization Test, CLV and PLV patients performed more poorly in conditions 3–6 and 3–4, as compared to NC subjects. The condition 5 score was significantly lower in the CLV group with respect to the PLV patients. Composite equilibrium scores demonstrated significant differences between low-vision subjects vs. NC subjects. No differences were found for somatosensorial contribution. Visual afferences showed lower values in all visually impaired subjects, while vestibular contribution was lower in the CLV patients as compared to the NC and PLV patients. MCT latencies were significantly worse in the CLV subjects. In the low-vision patients, postural control was modified with a specific pattern of strategy adaptation. Different modulations of postural control and different adaptive responses seemed to characterize CLV patients as compared to PLV subjects

    Styrene enhances the noise induced oxidative stress in the cochlea and affects differently mechanosensory and supporting cells

    Get PDF
    Experimental and human investigations have raised the level of concern about the potential ototoxicity of organic solvents and their interaction with noise. The main objective of this study was to characterize the effects of the combined noise and styrene exposure on hearing focusing on the mechanism of damage on the sensorineural cells and supporting cells of the organ of Corti and neurons of the ganglion of Corti. The impact of single and combined exposures on hearing was evaluated by auditory functional testing and histological analyses of cochlear specimens. The mechanism of damage was studied by analyzing superoxide anion and lipid peroxidation expression and by computational analyses of immunofluorescence data to evaluate and compare the oxidative stress pattern in outer hair cells versus the supporting epithelial cells of the organ of Corti. The oxidative stress hypothesis was further analyzed by evaluating the protective effect of a Coenzyme Q10 analogue, the water soluble Qter, molecule known to have protective antioxidant properties against noise induced hearing loss and by the analysis of the expression of the endogenous defense enzymes. This study provides evidence of a reciprocal noise-styrene synergism based on a redox imbalance mechanism affecting, although with a different intensity of damage, the outer hair cell (OHC) sensory epithelium. Moreover, these two damaging agents address preferentially different cochlear targets: noise mainly the sensory epithelium, styrene the supporting epithelial cells. Namely, the increase pattern of lipid peroxidation in the organ of Corti matched the cell damage distribution, involving predominantly OHC layer in noise exposed cochleae and both OHC and Deiters’ cell layers in the styrene or combined exposed cochleae. The antioxidant treatment reduced the lipid peroxidation increase, potentiated the endogenous antioxidant defense system at OHC level in both exposures but it failed to ameliorate the oxidative imbalance and cell death of Deiters’ cells in the styrene and combined exposures. Current antioxidant therapeutic approaches to preventing sensory loss focus on hair cells alone. It remains to be seen whether targeting supporting cells, in addition to hair cells, might be an effective approach to protecting exposed subject

    Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure

    Get PDF
    Recent progress in hearing loss research has provided strong evidence for the imbalance of cellular redox status and inflammation as common predominant mechanisms of damage affecting the organ of Corti including noise induced hearing loss. The discovery of a protective molecule acting on both mechanisms is challenging. The thiazolidinediones, a class of antidiabetic drugs including pioglitazone and rosiglitazone, have demonstrated diverse pleiotrophic effects in many tissues where they exhibit anti-inflammatory, anti-proliferative, tissue protective effects and regulators of redox balance acting as agonist of peroxisome proliferator-activated receptors (PPARs). They are members of the family of ligand regulated nuclear hormone receptors that are also expressed in several cochlear cell types, including the outer hair cells. In this study, we investigated the protective capacity of pioglitazone in a model of noise-induced hearing loss in Wistar rats and the molecular mechanisms underlying this protective effects. Specifically, we employed a formulation of pioglitazone in a biocompatible thermogel providing rapid, uniform and sustained inner ear drug delivery via transtympanic injection. Following noise exposure (120 dB, 10 kHz, 1 h), different time schedules of treatment were employed: we explored the efficacy of pioglitazone given immediately (1 h) or at delayed time points (24 and 48 h) after noise exposure and the time course and extent of hearing recovery were assessed. We found that pioglitazone was able to protect auditory function at the mid-high frequencies and to limit cell death in the cochlear basal/middle turn, damaged by noise exposure. Immunofluorescence and western blot analysis provided evidence that pioglitazone mediates both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1β expression in the cochlea and opposing the oxidative damage induced by noise insult. These results suggest that intratympanic pioglitazone can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage, reducing inflammatory signaling and restoring cochlear redox balance

    The redox protein p66(shc) mediates cochlear vascular dysfunction and transient noise-induced hearing loss

    Get PDF
    p66(shc), a member of the ShcA protein family, is essential for cellular response to oxidative stress, and elicits the formation of mitochondrial Reactive Oxygen Species (ROS), thus promoting vasomotor dysfunction and inflammation. Accordingly, mice lacking the p66 isoform display increased resistance to oxidative tissue damage and to cardiovascular disorders. Oxidative stress also contributes to noise-induced hearing loss (NIHL); we found that p66(shc) expression and serine phosphorylation were induced following noise exposure in the rat cochlea, together with markers of oxidative stress, inflammation and ischemia as indicated by the levels of the hypoxic inducible factor (HIF) and the vascular endothelial growth factor (VEGF) in the highly vascularised cochlear lateral region and spiral ganglion. Importantly, p66(shc) knock-out (p66 KO) 126 SvEv adult mice were less vulnerable to acoustic trauma with respect to wild type controls, as shown by preserved auditory function and by remarkably lower levels of oxidative stress and ischemia markers. Of note, decline of auditory function observed in 12 month old WT controls was markedly attenuated in p66KO mice consistent with delayed inner ear senescence. Collectively, we have identified a pivotal role for p66(shc) -induced vascular dysfunction in a common pathogenic cascade shared by noise-induced and age-related hearing loss

    Antioxidant Therapy as an Effective Strategy against Noise-Induced Hearing Loss: From Experimental Models to Clinic

    No full text
    Cochlear redox unbalance is the main mechanism of damage involved in the pathogenesis of noise-induced-hearing loss. Indeed, the increased free radical production, in conjunction with a reduced efficacy of the endogenous antioxidant system, plays a key role in cochlear damage induced by noise exposure. For this reason, several studies focused on the possibility to use exogenous antioxidant to prevent or attenuate noise-induce injury. Thus, several antioxidant molecules, alone or in combination with other compounds, have been tested in both experimental and clinical settings. In our findings, we tested the protective effects of several antioxidant enzymes, spanning from organic compounds to natural compounds, such as nutraceuticals of polyphenols. In this review, we summarize and discuss the strengths and weaknesses of antioxidant supplementation focusing on polyphenols, Q-Ter, the soluble form of CoQ10, Vitamin E and N-acetil-cysteine, which showed great otoprotective effects in different animal models of noise induced hearing loss and which has been proposed in clinical trials

    Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model

    No full text
    Aminoglycosides, such as gentamycin, are well known ototoxic agents. Toxicity occurs via an activation process involving the formation of an iron-gentamycin complex with free radical production. Antioxidants like Q-ter (a soluble formulation of coenzyme Q(10), CoQ(10)), can limit or prevent cellular ototoxic damage. The present study was designed to investigate the possible protective effects of Q-ter on gentamycin ototoxicity in albino guinea pigs (250-300 g). Animals were divided into five experimental groups: I, a sham control group given an intra-peritoneal (I.P.) injection of 0.5 ml saline (SHAM); II, gentamycin group (GM), treated with an injection of gentamycin (100 mg/ kg); III, gentamycin + Q-ter group (GM+Q-ter), treated with gentamycin (same dose as group II) and an I.P. injection of coenzyme Q(10) terclatrate (Q-ter) at 100 mg/kg body weight; IV, injected with gentamycin (100 mg/kg) plus saline; V, treated with Q-ter alone (100 mg/ kg). All animals were treated for 14 consecutive days. Auditory function was evaluated by recording auditory brainstem responses (ABR) at 15 and 30 days from the beginning of treatment. Morphological changes were analyzed by rhodamine-phalloidine staining. Gentamycin-induced progressive high-frequency hearing loss of 45-55 dB SPL. Q-ter therapy slowed and attenuated the progression of hearing loss, yielding a threshold shift of 20 dB. The significant loss of outer hair cells (OHCs) in the cochlear medio-basal turn in gentamycin-treated animals was not observed in the cochleae of animals protected with Q-ter. This study supports the hypothesis that Q-ter interferes with gentamycin-induced free radical formation, and suggests that it may be useful in protecting OHC function from aminoglycoside ototoxicity, thus reducing hearing loss

    Noise-Induced Cochlear Damage Involves PPAR Down-Regulation through the Interplay between Oxidative Stress and Inflammation

    No full text
    The cross-talk between oxidative stress and inflammation seems to play a key role in noise-induced hearing loss. Several studies have addressed the role of PPAR receptors in mediating antioxidant and anti-inflammatory effects and, although its protective activity has been demonstrated in several tissues, less is known about how PPARs could be involved in cochlear dysfunction induced by noise exposure. In this study, we used an in vivo model of noise-induced hearing loss to investigate how oxidative stress and inflammation participate in cochlear dysfunction through PPAR signaling pathways. Specifically, we found a progressive decrease in PPAR expression in the cochlea after acoustic trauma, paralleled by an increase in oxidative stress and inflammation. By comparing an antioxidant (Q-ter) and an anti-inflammatory (Anakinra) treatment, we demonstrated that oxidative stress is the primary element of damage in noise-induced cochlear injury and that increased inflammation can be considered a consequence of PPAR down-regulation induced by ROS production. Indeed, by decreasing oxidative stress, PPARs returned to control values, reactivating the negative control on inflammation in a feedback loop

    Styrene targets sensory and neural cochlear function through the crossroad between oxidative stress and inflammation

    No full text
    Although styrene is an established ototoxic agent at occupational exposure levels, the mechanisms of styrene toxicity in the auditory system are still unclear

    Assessment and Management of Platinum-Related Ototoxicity in Children Treated for Cancer

    Get PDF
    Platinum compounds are a group of chemotherapeutic agents included in many pediatric and adult oncologic treatment protocols. The main platinum compounds are cisplatin, carboplatin, and oxaliplatin. Their use in clinical practice has greatly improved long-term survival of pediatric patients, but they also cause some toxic effects: ototoxicity, myelosuppression, nephrotoxicity, and neurotoxicity. Hearing damage is one of the main toxic effects of platinum compounds, and it derives from the degeneration of hair cells of the ear, which, not having self-renewal capacity, cannot reconstitute themselves. Hearing loss from platinum exposure is typically bilateral, sensorineural, and permanent, and it is caused by the same mechanisms with which platinum acts on neoplastic cells. According to available data from the literature, the optimal timing for the audiological test during and after treatment with platinum compounds is not well defined. Moreover, no substances capable of preventing the onset of hearing loss have been identified

    Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    Get PDF
    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by \u3b2-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1-10 \u3bcM for 6 h) dose-dependently increased both basal and TMT (10 \u3bcM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 \u3bcM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1-10 \u3bcM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 \u3bcM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 \u3bcM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons
    corecore