6 research outputs found
Interaction patterns of brain activity across space, time and frequency. Part I: methods
We consider exploratory methods for the discovery of cortical functional
connectivity. Typically, data for the i-th subject (i=1...NS) is represented as
an NVxNT matrix Xi, corresponding to brain activity sampled at NT moments in
time from NV cortical voxels. A widely used method of analysis first
concatenates all subjects along the temporal dimension, and then performs an
independent component analysis (ICA) for estimating the common cortical
patterns of functional connectivity. There exist many other interesting
variations of this technique, as reviewed in [Calhoun et al. 2009 Neuroimage
45: S163-172]. We present methods for the more general problem of discovering
functional connectivity occurring at all possible time lags. For this purpose,
brain activity is viewed as a function of space and time, which allows the use
of the relatively new techniques of functional data analysis [Ramsay &
Silverman 2005: Functional data analysis. New York: Springer]. In essence, our
method first vectorizes the data from each subject, which constitutes the
natural discrete representation of a function of several variables, followed by
concatenation of all subjects. The singular value decomposition (SVD), as well
as the ICA of this new matrix of dimension [rows=(NT*NV); columns=NS] will
reveal spatio-temporal patterns of connectivity. As a further example, in the
case of EEG neuroimaging, Xi of size NVxNW may represent spectral density for
electric neuronal activity at NW discrete frequencies from NV cortical voxels,
from the i-th EEG epoch. In this case our functional data analysis approach
would reveal coupling of brain regions at possibly different frequencies.Comment: Technical report 2011-March-15, The KEY Institute for Brain-Mind
Research Zurich, KMU Osak
Adaptive estimation of spectral densities via wavelet thresholding and information projection
In this paper, we study the problem of adaptive estimation of the spectral
density of a stationary Gaussian process. For this purpose, we consider a
wavelet-based method which combines the ideas of wavelet approximation and
estimation by information projection in order to warrants that the solution is
a nonnegative function. The spectral density of the process is estimated by
projecting the wavelet thresholding expansion of the periodogram onto a family
of exponential functions. This ensures that the spectral density estimator is a
strictly positive function. Then, by Bochner's theorem, the corresponding
estimator of the covariance function is semidefinite positive. The theoretical
behavior of the estimator is established in terms of rate of convergence of the
Kullback-Leibler discrepancy over Besov classes. We also show the excellent
practical performance of the estimator in some numerical experiments
Estimation nonparamétrique de la structure de covariance des processus stochastiques
TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF
Effects of Neurofeedback on the Working Memory of Children with Learning Disorders—An EEG Power-Spectrum Analysis
Learning disorders (LDs) are diagnosed in children impaired in the academic skills of reading, writing and/or mathematics. Children with LDs usually exhibit a slower resting-state electroencephalogram (EEG), corresponding to a neurodevelopmental lag. Frequently, children with LDs show working memory (WM) impairment, associated with an abnormal task-related EEG with overall slower EEG activity (more delta and theta power, and less gamma activity in posterior sites). These EEG patterns indicate inefficient neural resource management. Neurofeedback (NFB) treatments aimed at normalizing the resting-state EEG of LD children have shown improvements in cognitive-behavioral indices and diminished EEG abnormalities. Given the typical findings of WM impairment in children with LDs, we aimed to explore the effects of an NFB treatment on the WM of children with LDs by analyzing the WM-related EEG power spectrum. EEGs of 18 children (8–11 y.o.) with LDs were recorded, pre- and post-treatment, during performance of a Sternberg-type WM task. Thirty sessions of an NFB treatment (NFB-group, n = 10) or 30 sessions of a placebo-sham treatment (sham-group, n = 8) were administered. We analyzed the before and after treatment group differences for the behavioral performance and the WM-related EEG power spectrum. The NFB group showed faster response times in the WM task post-treatment. They also exhibited a decreased theta power and increased beta and gamma power at the frontal and posterior sites post-treatment. We explain these findings in terms of NFB improving the efficiency of neural resource management, maintenance of memory representations, and improved subvocal memory rehearsal