18,213 research outputs found

    Determination of the Thermodynamic Scaling Exponent from Static, Ambient-Pressure Quantities

    Full text link
    An equation is derived that expresses the thermodynamic scaling exponent, g, which superposes relaxation times and other measures of molecular mobility determined over a range of temperatures and densities, in terms of static, physical quantities. The latter are available in the literature or can be measured at ambient pressure. We show for 13 materials, both molecular liquids and polymers, that the calculated g are equivalent to the scaling exponents obtained directly by superpositioning. The assumptions of the analysis are that the glass transition is isochronal and that the first Ehrenfest relation is valid; the first assumption is true by definition, while the second has been corroborated for many glass-forming materials at ambient pressure. However, we find that the Ehrenfest relation breaks down at elevated pressure, although this limitation is of no consequence herein, since the appeal of the new equation is its applicability to ambient pressure data.Comment: 9 pages, 3 figures, 1 tabl

    Thermodynamic scaling of diffusion in supercooled Lennard-Jones liquids

    Full text link
    The manner in which the intermolecular potential u(r) governs structural relaxation in liquids is a long standing problem in condensed matter physics. Herein we show that diffusion coefficients for simulated Lennard-Jones m-6 liquids (8<m<36) in normal and moderately supercooled states are a unique function of the variable rho^g/T, where rho is density and T is temperature. The scaling exponent g is a material specific constant whose magnitude is related to the steepness of the repulsive part of u(r), evaluated around the distance of closest approach between particles probed in the supercooled regime. Approximations of u(r) in terms of inverse power laws are also discussed.Comment: 4 pages, 3 figure

    Optical data storage and metallization of polymers

    Get PDF
    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described

    Density Scaling and Dynamic Correlations in Viscous Liquids

    Full text link
    We use a recently proposed method [Berthier L.; Biroli G.; Bouchaud J.P.; Cipelletti L.; El Masri D.; L'Hote D.; Ladieu F.; Pierno M. Science 2005, 310, 1797.] to obtain an approximation to the 4-point dynamic correlation function from derivatives of the linear dielectric response function. For four liquids over a range of pressures, we find that the number of dynamically correlated molecules, Nc, depends only on the magnitude of the relaxation time, independently of temperature and pressure. This result is consistent with the invariance of the shape of the relaxation dispersion at constant relaxation time and the density scaling property of the relaxation times, and implies that Nc also conforms to the same scaling behavior. For propylene carbonate and salol Nc becomes constant with approach to the Arrhenius regime, consistent with the value of unity expected for intermolecularly non-cooperative relaxation.Comment: revisio

    What can we learn by squeezing a liquid

    Full text link
    Relaxation times for different temperatures, T, and specific volumes, V, collapse to a master curve versus TV^g, with g a material constant. The isochoric fragility, m_V, is also a material constant, inversely correlated with g. From these we obtain a 3-parameter function, which fits accurately relaxation times of several glass-formers over the supercooled regime, without any divergence below Tg. Although the 3 parameters depend on the material, only g significant varies; thus, by normalizing material-specific quantities related to g, a universal power law for the dynamics is obtained.Comment: 12 pages, 4 figure
    • …
    corecore