2,760 research outputs found
Pancreatoduodenectomy with or without Pyloric Preservation: A Clinical Outcomes Comparison
Pyloric preservation (PP) can frequently be performed at the time of pancreatoduodenectomy (PD), although some reports have linked it to inferior outcomes such as delayed gastric emptying (DGE). We reviewed records in a single-surgeon practice to assess outcomes after PD with or without PP. There were 133 PDs with 67 PPPDs and 66 PDs. Differences between PPPD and PD groups included cancer frequency, tumor size, OR time, blood loss, and transfusion rate. However, postoperative morbidity rate and grade, NG tube duration, NGT reinsertion rate, DGE, and length of stay were similar. There was no difference among patients with pancreatic cancer. No detrimental outcomes are associated with pyloric preservation during PD. Greater intraoperative ease and superior survival in the PPPD group are due to confounding, tumor-related variables in this nonrandomized comparison. Nevertheless, we intend to continue the use of PP with our technique in patients who meet the stated criteria
The Landscape of Immunotherapy for Retroperitoneal Sarcoma
Significant multidisciplinary scientific effort has been undertaken to understand the heterogeneous family of neoplasms that comprise soft tissue sarcomas. Within this family of neoplasms, outcomes for retroperitoneal sarcomas (RPS) are currently limited given a lack of effective therapies. In this review, we focus on immunotherapy and its relationship with the common RPS histologic subtypes. Although initial outcomes for RPS patients with immune checkpoint inhibition alone have been somewhat disappointing, subsequent analyses on histologies, the tumor microenvironment, sarcoma immune class, tumor infiltrating lymphocytes and genetic analysis for tumor mutational burden have yielded insight into the interplay between sarcomas and immunotherapy. Such approaches have all provided critical insight into the environment and characterization of these tumors, with targets for potential immunotherapy in future clinical trials. With this insight, molecularly tailored combination treatments for improving response rates and oncologic outcomes for RPS are promising
The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor.
Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]).
Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance.
Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913–935
Targeting the MDM2-p53 Pathway in Dedifferentiated Liposarcoma
Dedifferentiated liposarcoma (DDLPS) is an aggressive adipogenic cancer with poor prognosis. DDLPS tumors are only modestly sensitive to chemotherapy and radiation, and there is a need for more effective therapies. Genetically, DDLPS is characterized by a low tumor mutational burden and frequent chromosomal structural abnormalities including amplification of the 12q13-15 chromosomal region and the MDM2 gene, which are defining features of DDLPS. The MDM2 protein is an E3 ubiquitin ligase that targets the tumor suppressor, p53, for proteasomal degradation. MDM2 amplification or overexpression in human malignancies is associated with cell-cycle progression and worse prognosis. The MDM2-p53 interaction has thus garnered interest as a therapeutic target for DDLPS and other malignancies. MDM2 binds p53 via a hydrophobic protein interaction that is easily accessible with synthetic analogues. Multiple agents have been developed, including Nutlins such as RG7112 and small molecular inhibitors including SAR405838 and HDM201. Preclinical in vitro and animal models have shown promising results with MDM2 inhibition, resulting in robust p53 reactivation and cancer cell death. However, multiple early-phase clinical trials have failed to show a benefit with MDM2 pathway inhibition for DDLPS. Mechanisms of resistance are being elucidated, and novel inhibitors and combination therapies are currently under investigation. This review provides an overview of these strategies for targeting MDM2 in DDLPS
Targeting the Molecular and Immunologic Features of Leiomyosarcoma
Leiomyosarcoma (LMS) is a rare, aggressive mesenchymal tumor with smooth muscle differentiation. LMS is one of the most common histologic subtypes of soft tissue sarcoma; it most frequently occurs in the extremities, retroperitoneum, or uterus. LMS often demonstrates aggressive tumor biology, with a higher risk of developing distant metastatic disease than most sarcoma histologic types. The prognosis is poor, particularly in patients with uterine disease, and there is a need for the development of more effective therapies. Genetically, LMS is karyotypically complex and characterized by a low tumor mutational burden, with frequent alterations in TP53, RB1, PTEN, and DNA damage response pathways that may contribute to resistance against immune-checkpoint blockade monotherapy. The LMS immune microenvironment is highly infiltrated with tumor-associated macrophages and tumor-infiltrating lymphocytes, which may represent promising biomarkers. This review provides an overview of the clinical and pathologic behavior of both soft tissue and uterine LMS and summarizes the genomic and immune characteristics of these tumors and how they may provide opportunities for the development of biomarker-based immune therapies
Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA, accounting for ~40,000 deaths annually. The dismal prognosis for PDAC is largely due to its late diagnosis. Currently, the most sensitive diagnosis of PDAC requires invasive procedures, such as endoscopic ultrasonography, which has inherent risks and accuracy that is highly operator dependent. Here we took advantage of a general characteristic of solid tumors, the acidic microenvironment that is generated as a by-product of metabolism, to develop a novel approach of using pH (Low) Insertion Peptides (pHLIPs) for imaging of PDAC. We show that fluorescently labeled pHLIPs can localize and specifically detect PDAC in human xenografts as well as PDAC and PanIN lesions in genetically engineered mouse models. This novel approach may improve detection, differential diagnosis and staging of PDAC
Hypofractionated, 3-Week, Preoperative Radiotherapy for Patients With Soft Tissue Sarcomas (Hyport-Sts): A Single-Centre, Open-Label, Single-Arm, Phase 2 Trial
BACKGROUND: The standard preoperative radiotherapy regimen of 50 Gy delivered in 25 fractions for 5 weeks for soft tissue sarcomas results in excellent local control, with major wound complications occurring in approximately 35% of patients. We aimed to investigate the safety of a moderately hypofractionated, shorter regimen of radiotherapy, which could be more convenient for patients.
METHODS: This single-centre, open-label, single-arm, phase 2 trial (HYPORT-STS) was done at a single tertiary cancer care centre (MD Anderson Cancer Center, Houston, TX, USA). We administered preoperative radiotherapy to a dose of 42·75 Gy in 15 fractions of 2·85 Gy/day for 3 weeks (five fractions per week) to adults (aged ≥18 years) with non-metastatic soft tissue sarcomas of the extremities or superficial trunk and an Eastern Cooperative Oncology Group performance status of 0-3. The primary endpoint was a major wound complication occurring within 120 days of surgery. Major wound complications were defined as those requiring a secondary operation, or operations, under general or regional anaesthesia for wound treatment; readmission to the hospital for wound care; invasive procedures for wound care; deep wound packing to an area of wound measuring at least 2 cm in length; prolonged dressing changes; repeat surgery for revision of a split thickness skin graft; or wet dressings for longer than 4 weeks. We analysed our primary outcome and safety in all patients who enrolled. We monitored safety using a Bayesian, one-arm, time-to-event stopping rule simulator comparing the rate of major wound complications at 120 days post-surgery among study participants with the historical rate of 35%. This trial is registered with ClinicalTrials.gov, NCT03819985, recruitment is complete, and follow-up continues.
FINDINGS: Between Dec 18, 2018, and Jan 6, 2021, we assessed 157 patients for eligibility, of whom 120 were enrolled and received hypofractionated preoperative radiotherapy. At no time did the stopping rule computation indicate that the trial should be stopped early for lack of safety. Median postoperative follow-up was 24 months (IQR 17-30). Of 120 patients, 37 (31%, 95% CI 24-40) developed a major wound complication at a median time of 37 days (IQR 25-59) after surgery. No patient had acute radiation toxicity (during radiotherapy or within 4 weeks of the radiotherapy end date) of grade 3 or worse (Common Terminology Criteria for Adverse Events [CTCAE] version 4.0) or an on-treatment serious adverse event. Four (3%) of 115 patients had late radiation toxicity (≥6 months post-surgery) of at least grade 3 (CTCAE or Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme): femur fractures (n=2), lymphoedema (n=1), and skin ulceration (n=1). There were no treatment-related deaths.
INTERPRETATION: Moderately hypofractionated preoperative radiotherapy delivered to patients with soft tissue sarcomas was safe and could therefore be a more convenient alternative to conventionally fractionated radiotherapy. Patients can be counselled about these results and potentially offered this regimen, particularly if it facilitates care at a sarcoma specialty centre. Results on long-term oncological, late toxicity, and functional outcomes are awaited.
FUNDING: The National Cancer Institute
Catastrophizing mediates the relationship between the personal belief in a just world and pain outcomes among chronic pain support group attendees
Health-related research suggests the belief in a just world can act as a personal resource that protects against the adverse effects of pain and illness. However, currently, little is known about how this belief, particularly in relation to one’s own life, might influence pain. Consistent with the suggestions of previous research, the present study undertook a secondary data analysis to investigate pain catastrophizing as a mediator of the relationship between the personal just world belief and chronic pain outcomes in a sample of chronic pain support group attendees. Partially supporting the hypotheses, catastrophizing was negatively correlated with the personal just world belief and mediated the relationship between this belief and pain and disability, but not distress. Suggestions for future research and intervention development are made
Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals
Abstract. Emissions of the potent greenhouse gas perfluorocyclobutane
(c-C4F8, PFC-318, octafluorocyclobutane) into the global atmosphere
inferred from atmospheric measurements have been increasing sharply since
the early 2000s. We find that these inferred emissions are highly correlated
with the production of hydrochlorofluorocarbon-22 (HCFC-22, CHClF2) for
feedstock (FS) uses, because almost all HCFC-22 FS is pyrolyzed to produce
(poly)tetrafluoroethylene ((P)TFE) and hexafluoropropylene (HFP), a process
in which c-C4F8 is a known by-product, causing a significant
fraction of global c-C4F8 emissions. We find a global emission
factor of ∼0.003 kg c-C4F8 per kilogram of HCFC-22 FS
pyrolyzed. Mitigation of these c-C4F8 emissions, e.g., through
process optimization, abatement, or different manufacturing processes, such
as refined methods of electrochemical fluorination and waste recycling,
could reduce the climate impact of this industry. While it has been shown
that c-C4F8 emissions from developing countries dominate global
emissions, more atmospheric measurements and/or detailed process statistics
are needed to quantify c-C4F8 emissions at country to facility
levels
- …