5 research outputs found

    Aerodynamics of flexible membranes

    Get PDF
    Membrane wings are used both in nature and small aircraft as lifting surfaces. For these low Reynolds number applications, separated flows are common and are the main sources of unsteadiness. Adaptability of the membrane wing is known to improve the vehicle performance; and membrane compliancy in animal wings such as bats contributes significantly to their astonishing flights. Yet, the aerodynamic characteristics of the membranes are still largely unknown. An experimental study of flexible membranes at low Reynolds numbers was undertaken. Two-dimensional membrane aerofoils were investigated, with particular focus on the unsteady aspects. Membrane deformation, flow fields and fluid-structure interaction were examined over a range of angles of attack and freestream velocities. A comprehensive study of the effect of membrane pre-strain and excess length was carried out. Low aspect ratio membrane wings were investigated for rectangular and nonslender delta wings. The amplitude and mode of membrane vibration are found to be dependent mainly on the location and the unsteadiness level of the shear layer. The results indicate a strong coupling of unsteady flow with the membrane oscillation. With increasing Reynolds number, the separated shear layer becomes more energetic and closer to the surface. The membrane not only has smaller size of the separation region compared to a rigid aerofoil, but also excites the roll-up of large vortices which might lead to delayed stall. The membrane aerofoils with excess length exhibit higher vibration modes, earlier roll-up and smaller separated region, compared to the ones with pre-strain. This smaller separated region delays the onset of membrane vibrations to a larger incidence. For the low aspect ratio membrane wings, the combination of tip vortices and leading-edge vortex shedding results in a mixture of streamwise and spanwise vibrational modes. The flexibility benefits the rectangular wing more than the delta wing by increasing the maximum normal force and the force slope by a larger amount. Similar to the two-dimensional membrane aerofoils, the Strouhal numbers of the oscillations are on the order of unity, and there is a coupling with the wake instabilities in the post-stall region. Stronger tip vortices on membrane wings contribute significantly to total lift enhancement.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Effect of Water Evaporation in Automotive Windshield Defrosting

    Get PDF
    Water evaporation during windshield defrosting is investigated paying particular attention to the effects of air humidity and wind speed. During the defrosting process, the ice layer on the windshield begins to melt as the temperature of the defrost air increases. Results have shown that the ice-turned-water can evaporate depending upon the ambient air humidity level and the wind speed. Water evaporation takes the heat otherwise available for melting, thereby delaying the ice melting process.  It is found that at low wind speeds the effect of air humidity in delaying the ice-melting is minimal.  However, at high wind speeds, (>10 m/s) water evaporation can take enough heat away from melting, thereby significantly reducing the ice removal rate. In relation to this, driver safety concerns associated with the reduction of ice melting rate are discussed

    Flow-induced vibrations of low aspect ratio rectangular membrane wings

    Get PDF
    An experimental study of a low aspect ratio rectangular membrane wing in a wind tunnel was conducted for a Reynolds number range of 2.4 x 10(4)-4.8 x 10(4). Time-accurate measurements of membrane deformation were combined with the flow field measurements. Analysis of the fluctuating deformation reveals chordwise and spanwise modes, which are due to the shedding of leading-edge vortices as well as tip vortices. At higher angles of attack, the second mode in the chordwise direction becomes dominant as the vortex shedding takes place. The dominant frequencies of the membrane vibrations are similar to those of two-dimensional membrane airfoils. Measured frequency of vortex shedding from the low aspect ratio rigid wing suggests that membrane vibrations occur at the natural frequencies close to the harmonics of the wake instabilities. Vortex shedding frequency from rigid wings shows remarkably small effect of aspect ratio even when it is as low as unity. (C) 2011 Elsevier Ltd. All rights reserved.An experimental study of a low aspect ratio rectangular membrane wing in a wind tunnel was conducted for a Reynolds number range of 2.4Γ—104–4.8Γ—104. Time-accurate measurements of membrane deformation were combined with the flow field measurements. Analysis of the fluctuating deformation reveals chordwise and spanwise modes, which are due to the shedding of leading-edge vortices as well as tip vortices. At higher angles of attack, the second mode in the chordwise direction becomes dominant as the vortex shedding takes place. The dominant frequencies of the membrane vibrations are similar to those of two-dimensional membrane airfoils. Measured frequency of vortex shedding from the low aspect ratio rigid wing suggests that membrane vibrations occur at the natural frequencies close to the harmonics of the wake instabilities. Vortex shedding frequency from rigid wings shows remarkably small effect of aspect ratio even when it is as low as unity
    corecore