13 research outputs found

    BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers

    No full text
    Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for ‘targeted’ resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a ‘kmer’ strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings

    Additional file 8: Figure S1. of The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine

    No full text
    Mutational load predictions with different panel tests for the colon adenocarcinoma subset. Comparison of mutational load predictions using WES or either matched (a) or unmatched (b) large panel tests (n = 300 genes) demonstrates both can reliably predict the mutational load. The linear regression line is shown in black with 95 % confidence bands shaded in grey. The identity line (dashed) is shown for comparison. With medium sized panels (n = 48 genes), this ability decreases in both the matched and unmatched setting and is not possible with small (n = 15) gene panels. Note that hypermutated tumors were excluded from the regression analysis. (PDF 809 kb

    Additional file 9: Figure S2. of The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine

    No full text
    Mutational load predictions with different panel tests for the lung adenocarcinoma subset. Comparison of mutational load predictions using WES or either matched (a) or unmatched (b) large panel tests (n = 300 genes) demonstrates both can reliably predict the mutational load. The linear regression line is shown in black with 95 % confidence bands shaded in grey. The identity line (dashed) is shown for comparison. With medium sized panels (n = 48 genes), this ability decreases in both the matched and unmatched setting and is not possible with small (n = 15) gene panels. (PDF 848 kb
    corecore