3 research outputs found

    A distributionally robust perspective on uncertainty quantification and chance constrained programming

    Get PDF
    The objective of uncertainty quantification is to certify that a given physical, engineering or economic system satisfies multiple safety conditions with high probability. A more ambitious goal is to actively influence the system so as to guarantee and maintain its safety, a scenario which can be modeled through a chance constrained program. In this paper we assume that the parameters of the system are governed by an ambiguous distribution that is only known to belong to an ambiguity set characterized through generalized moment bounds and structural properties such as symmetry, unimodality or independence patterns. We delineate the watershed between tractability and intractability in ambiguity-averse uncertainty quantification and chance constrained programming. Using tools from distributionally robust optimization, we derive explicit conic reformulations for tractable problem classes and suggest efficiently computable conservative approximations for intractable ones

    Ambiguous joint chance constraints under mean and dispersion information

    No full text
    We study joint chance constraints where the distribution of the uncertain parameters is only known to belong to an ambiguity set characterized by the mean and support of the uncertainties and by an upper bound on their dispersion. This setting gives rise to pessimistic (optimistic) ambiguous chance constraints, which require the corresponding classical chance constraints to be satisfied for every (for at least one) distribution in the ambiguity set. We demonstrate that the pessimistic joint chance constraints are conic representable if (i) the constraint coefficients of the decisions are deterministic, (ii) the support set of the uncertain parameters is a cone, and (iii) the dispersion function is of first order, that is, it is positively homogeneous. We also show that pessimistic joint chance constrained programs become intractable as soon as any of the conditions (i), (ii) or (iii) is relaxed in the mildest possible way. We further prove that the optimistic joint chance constraints are conic representable if (i) holds, and that they become intractable if (i) is violated. We show in numerical experiments that our results allow us to solve large-scale project management and image reconstruction models to global optimality. The online appendix is available at https://doi.org/10.1287/opre.2016.1583
    corecore