2 research outputs found

    External validation of six COVID-19 prognostic models for predicting mortality risk in older populations in a hospital, primary care, and nursing home setting

    Get PDF
    Objectives: To systematically evaluate the performance of COVID-19 prognostic models and scores for mortality risk in older populations across three health-care settings: hospitals, primary care, and nursing homes.Study Design and Setting: This retrospective external validation study included 14,092 older individuals of >=70 years of age with a clinical or polymerase chain reaction-confirmed COVID-19 diagnosis from March 2020 to December 2020. The six validation cohorts include three hospital-based (CliniCo, COVID-OLD, COVID-PREDICT), two primary care-based (Julius General Practitioners Network/Academisch network huisartsgeneeskunde/Network of Academic general Practitioners, PHARMO), and one nursing home cohort (YSIS) in the Netherlands. Based on a living systematic review of COVID-19 prediction models using Prediction model Risk Of Bias ASsessment Tool for quality and risk of bias assessment and considering predictor availability in validation cohorts, we selected six prognostic models predicting mortality risk in adults with COVID-19 infection (GAL-COVID-19 mortality, 4C Mortality Score, National Early Warning Score 2-extended model, Xie model, Wang clinical model, and CURB65 score). All six prognostic models were validated in the hospital cohorts and the GAL-COVID-19 mortality model was validated in all three healthcare settings. The primary outcome was in-hospital mortality for hospitals and 28-day mortality for primary care and nursing home settings. Model performance was evaluated in each validation cohort separately in terms of discrimination, calibration, and decision curves. An intercept update was performed in models indicating miscalibration followed by predictive performance re-evaluation. Main Outcome Measure: In-hospital mortality for hospitals and 28-day mortality for primary care and nursing home setting. Results: All six prognostic models performed poorly and showed miscalibration in the older population cohorts. In the hospital settings, model performance ranged from calibration-in-the-large 1.45 to 7.46, calibration slopes 0.24e0.81, and C-statistic 0.55e0.71 with 4C Mortality Score performing as the most discriminative and well-calibrated model. Performance across health-care settings was similar for the GAL-COVID-19 model, with a calibration-in-the-large in the range of 2.35 to 0.15 indicating overestimation, calibration slopes of 0.24e0.81 indicating signs of overfitting, and C-statistic of 0.55e0.71. Conclusion: Our results show that most prognostic models for predicting mortality risk performed poorly in the older population with COVID-19, in each health-care setting: hospital, primary care, and nursing home settings. Insights into factors influencing predictive model performance in the older population are needed for pandemic preparedness and reliable prognostication of health-related outcomes in this demographicGeriatrics in primary carePublic Health and primary carePrevention, Population and Disease management (PrePoD

    A study protocol of external validation of eight COVID-19 prognostic models for predicting mortality risk in older populations in a hospital, primary care, and nursing home setting.

    No full text
    BACKGROUND: The COVID-19 pandemic has a large impact worldwide and is known to particularly affect the older population. This paper outlines the protocol for external validation of prognostic models predicting mortality risk after presentation with COVID-19 in the older population. These prognostic models were originally developed in an adult population and will be validated in an older population (≥ 70 years of age) in three healthcare settings: the hospital setting, the primary care setting, and the nursing home setting. METHODS: Based on a living systematic review of COVID-19 prediction models, we identified eight prognostic models predicting the risk of mortality in adults with a COVID-19 infection (five COVID-19 specific models: GAL-COVID-19 mortality, 4C Mortality Score, NEWS2 + model, Xie model, and Wang clinical model and three pre-existing prognostic scores: APACHE-II, CURB65, SOFA). These eight models will be validated in six different cohorts of the Dutch older population (three hospital cohorts, two primary care cohorts, and a nursing home cohort). All prognostic models will be validated in a hospital setting while the GAL-COVID-19 mortality model will be validated in hospital, primary care, and nursing home settings. The study will include individuals ≥ 70 years of age with a highly suspected or PCR-confirmed COVID-19 infection from March 2020 to December 2020 (and up to December 2021 in a sensitivity analysis). The predictive performance will be evaluated in terms of discrimination, calibration, and decision curves for each of the prognostic models in each cohort individually. For prognostic models with indications of miscalibration, an intercept update will be performed after which predictive performance will be re-evaluated. DISCUSSION: Insight into the performance of existing prognostic models in one of the most vulnerable populations clarifies the extent to which tailoring of COVID-19 prognostic models is needed when models are applied to the older population. Such insight will be important for possible future waves of the COVID-19 pandemic or future pandemics
    corecore