30 research outputs found

    Jamming non-local quantum correlations

    Get PDF
    We present a possible scheme to tamper with non-local quantum correlations in a way that is consistent with relativistic causality, but goes beyond quantum mechanics. A non-local ``jamming" mechanism, operating within a certain space-time window, would not violate relativistic causality and would not lead to contradictory causal loops. The results presented in this Letter do not depend on any model of how quantum correlations arise and apply to any jamming mechanism.Comment: 10 pp, LaTe

    Entropy in general physical theories

    Get PDF
    Information plays an important role in our understanding of the physical world. We hence propose an entropic measure of information for any physical theory that admits systems, states and measurements. In the quantum and classical world, our measure reduces to the von Neumann and Shannon entropy respectively. It can even be used in a quantum or classical setting where we are only allowed to perform a limited set of operations. In a world that admits superstrong correlations in the form of non-local boxes, our measure can be used to analyze protocols such as superstrong random access encodings and the violation of `information causality'. However, we also show that in such a world no entropic measure can exhibit all properties we commonly accept in a quantum setting. For example, there exists no`reasonable' measure of conditional entropy that is subadditive. Finally, we prove a coding theorem for some theories that is analogous to the quantum and classical setting, providing us with an appealing operational interpretation.Comment: 20 pages, revtex, 7 figures, v2: Coding theorem revised, published versio

    A Bell Inequality Analog in Quantum Measure Theory

    Get PDF
    One obtains Bell's inequalities if one posits a hypothetical joint probability distribution, or {\it measure}, whose marginals yield the probabilities produced by the spin measurements in question. The existence of a joint measure is in turn equivalent to a certain causality condition known as ``screening off''. We show that if one assumes, more generally, a joint {\it quantal measure}, or ``decoherence functional'', one obtains instead an analogous inequality weaker by a factor of 2\sqrt{2}. The proof of this ``Tsirel'son inequality'' is geometrical and rests on the possibility of associating a Hilbert space to any strongly positive quantal measure. These results lead both to a {\it question}: ``Does a joint measure follow from some quantal analog of `screening off'?'', and to the {\it observation} that non-contextual hidden variables are viable in histories-based quantum mechanics, even if they are excluded classically.Comment: 38 pages, TeX. Several changes and added comments to bring out the meaning more clearly. Minor rewording and extra acknowledgements, now closer to published versio

    A derivation of quantum theory from physical requirements

    Full text link
    Quantum theory is usually formulated in terms of abstract mathematical postulates, involving Hilbert spaces, state vectors, and unitary operators. In this work, we show that the full formalism of quantum theory can instead be derived from five simple physical requirements, based on elementary assumptions about preparation, transformations and measurements. This is more similar to the usual formulation of special relativity, where two simple physical requirements -- the principles of relativity and light speed invariance -- are used to derive the mathematical structure of Minkowski space-time. Our derivation provides insights into the physical origin of the structure of quantum state spaces (including a group-theoretic explanation of the Bloch ball and its three-dimensionality), and it suggests several natural possibilities to construct consistent modifications of quantum theory.Comment: 16 pages, 2 figures. V3: added alternative formulation of Requirement 5, extended abstract, some minor modification

    The states of W-class as shared resources for perfect teleportation and superdense coding

    Get PDF
    As we know, the states of triqubit systems have two important classes: GHZ-class and W-class. In this paper, the states of W-class are considered for teleportation and superdense coding, and are generalized to multi-particle systems. First we describe two transformations of the shared resources for teleportation and superdense coding, which allow many new protocols from some known ones for that. As an application of these transformations, we obtain a sufficient and necessary condition for a state of W-class being suitable for perfect teleportation and superdense coding. As another application, we find that state ∣W>123=1/2(∣100>123+∣010>123+2∣001>123)|W>_{123}={1/2}(|100>_{123}+|010>_{123}+\sqrt{2}|001>_{123}) can be used to transmit three classical bits by sending two qubits, which was considered to be impossible by P. Agrawal and A. Pati [Phys. Rev. A to be published]. We generalize the states of W-class to multi-qubit systems and multi-particle systems with higher dimension. We propose two protocols for teleportation and superdense coding by using W-states of multi-qubit systems that generalize the protocols by using ∣W>123|W>_{123} proposed by P. Agrawal and A. Pati. We obtain an optimal way to partition some W-states of multi-qubit systems into two subsystems, such that the entanglement between them achieves maximum value.Comment: 10 pages, critical comments and suggestions are welcom

    QUANTUM NONLOCALITY AS AN AXIOM

    No full text

    Action and passion at a distance

    No full text

    The joy of entanglement

    No full text

    Generic quantum nonlocality

    No full text
    corecore