444 research outputs found

    Interference in the radiation of two point-like charges

    Full text link
    Energy-momentum and angular momentum carried by electromagnetic field of two point-like charged particles arbitrarily moving in flat spacetime are presented. Apart from usual contributions to the Noether quantities produced separately by particles 1 and 2, the conservation laws contain also joint contribution due to the fields of both particles. The mixed part of Maxwell energy-momentum density is decomposed into bound and radiative components which are separately conserved off the world lines of particles. The former describes the deformation of electromagnetic clouds of ``bare'' charges due to mutual interaction while the latter defines the radiation which escapes to infinity. The bound terms contribute to particles' individual 4-momenta while the radiative ones exert the radiation reaction. Analysis of energy-momentum and angular momentum balance equations results the Lorentz-Dirac equation as an equation of motion for a pointed charge under the influence of its own electromagnetic field as well as field produced by another charge.Comment: 46 pages, 8 figure

    Causal Classical Theory of Radiation Damping

    Get PDF
    It is shown how initial conditions can be appropriately defined for the integration of Lorentz-Dirac equations of motion. The integration is performed \QTR{it}{forward} in time. The theory is applied to the case of the motion of an electron in an intense laser pulse, relevant to nonlinear Compton scattering.Comment: 8 pages, 2 figure

    Regulator constants and the parity conjecture

    Full text link
    The p-parity conjecture for twists of elliptic curves relates multiplicities of Artin representations in p-infinity Selmer groups to root numbers. In this paper we prove this conjecture for a class of such twists. For example, if E/Q is semistable at 2 and 3, K/Q is abelian and K^\infty is its maximal pro-p extension, then the p-parity conjecture holds for twists of E by all orthogonal Artin representations of Gal(K^\infty/Q). We also give analogous results when K/Q is non-abelian, the base field is not Q and E is replaced by an abelian variety. The heart of the paper is a study of relations between permutation representations of finite groups, their "regulator constants", and compatibility between local root numbers and local Tamagawa numbers of abelian varieties in such relations.Comment: 50 pages; minor corrections; final version, to appear in Invent. Mat

    Controlled Dephasing of a Quantum Dot: From Coherent to Sequential Tunneling

    Full text link
    Resonant tunneling through identical potential barriers is a textbook problem in quantum mechanics. Its solution yields total transparency (100% tunneling) at discrete energies. This dramatic phenomenon results from coherent interference among many trajectories, and it is the basis of transport through periodic structures. Resonant tunneling of electrons is commonly seen in semiconducting 'quantum dots'. Here we demonstrate that detecting (distinguishing) electron trajectories in a quantum dot (QD) renders the QD nearly insulating. We couple trajectories in the QD to a 'detector' by employing edge channels in the integer quantum Hall regime. That is, we couple electrons tunneling through an inner channel to electrons in the neighboring outer, 'detector' channel. A small bias applied to the detector channel suffices to dephase (quench) the resonant tunneling completely. We derive a formula for dephasing that agrees well with our data and implies that just a few electrons passing through the detector channel suffice to dephase the QD completely. This basic experiment shows how path detection in a QD induces a transition from delocalization (due to coherent tunneling) to localization (sequential tunneling)

    Radiation from a charged particle and radiation reaction -- revisited

    Get PDF
    We study the electromagnetic fields of an arbitrarily moving charged particle and the radiation reaction on the charged particle using a novel approach. We first show that the fields of an arbitrarily moving charged particle in an inertial frame can be related in a simple manner to the fields of a uniformly accelerated charged particle in its rest frame. Since the latter field is static and easily obtainable, it is possible to derive the fields of an arbitrarily moving charged particle by a coordinate transformation. More importantly, this formalism allows us to calculate the self-force on a charged particle in a remarkably simple manner. We show that the original expression for this force, obtained by Dirac, can be rederived with much less computation and in an intuitively simple manner using our formalism.Comment: Submitted to Physical Review

    On the Green-Functions of the classical offshell electrodynamics under the manifestly covariant relativistic dynamics of Stueckelberg

    Full text link
    In previous paper derivations of the Green function have been given for 5D off-shell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg (with invariant evolution parameter τ\tau). In this paper, we reconcile these derivations resulting in different explicit forms, and relate our results to the conventional fundamental solutions of linear 5D wave equations published in the mathematical literature. We give physical arguments for the choice of the Green function retarded in the fifth variable τ\tau.Comment: 16 pages, 1 figur

    One-mirror Fabry-Perot and one-slit Young interferometry

    Full text link
    We describe a new and distinctive interferometry in which a probe particle scatters off a superposition of locations of a single free target particle. In one dimension, probe particles incident on superposed locations of a single "mirror" can interfere as if in a Fabry-Perot interferometer; in two dimensions, probe particles scattering off superposed locations of a single "slit" can interfere as if in a two-slit Young interferometer. The condition for interference is loss of orthogonality of the target states and reduces, in simple examples, to transfer of orthogonality from target to probe states. We analyze experimental parameters and conditions necessary for interference to be observed.Comment: 5 pages, 2 figures, RevTeX, submitted to PR

    Singularity-Free Electrodynamics for Point Charges and Dipoles: Classical Model for Electron Self-Energy and Spin

    Get PDF
    It is shown how point charges and point dipoles with finite self-energies can be accomodated into classical electrodynamics. The key idea is the introduction of constitutive relations for the electromagnetic vacuum, which actually mirrors the physical reality of vacuum polarization. Our results reduce to conventional electrodynamics for scales large compared to the classical electron radius r02.8×1013r_0\approx 2.8\times10^{-13} cm. A classical simulation for a structureless electron is proposed, with the appropriate values of mass, spin and magnetic moment.Comment: 3 page

    Self force in 2+1 electrodynamics

    Full text link
    The radiation reaction problem for an electric charge moving in flat space-time of three dimensions is discussed. The divergences stemming from the pointness of the particle are studied. A consistent regularization procedure is proposed, which exploits the Poincar\'e invariance of the theory. Effective equation of motion of radiating charge in an external electromagnetic field is obtained via the consideration of energy-momentum and angular momentum conservation. This equation includes the effect of the particle's own field. The radiation reaction is determined by the Lorentz force of point-like charge acting upon itself plus a non-local term which provides finiteness of the self-action.Comment: 20 pages, 3 figure

    Radiation reaction on charged particles in three-dimensional motion in classical and quantum electrodynamics

    Full text link
    We extend our previous work (see arXiv:quant-ph/0501026), which compared the predictions of quantum electrodynamics concerning radiation reaction with those of the Abraham-Lorentz-Dirac theory for a charged particle in linear motion. Specifically, we calculate the predictions for the change in position of a charged scalar particle, moving in three-dimensional space, due to the effect of radiation reaction in the one-photon-emission process in quantum electrodynamics. The scalar particle is assumed to be accelerated for a finite period of time by a three-dimensional electromagnetic potential dependent only on one of the spacetime coordinates. We perform this calculation in the 0\hbar\to 0 limit and show that the change in position agrees with that obtained in classical electrodynamics with the Lorentz-Dirac force treated as a perturbation. We also show for a time-dependent but space-independent electromagnetic potential that the forward-scattering amplitude at order e2e^2 does not contribute to the position change in the 0\hbar \to 0 limit after the mass renormalization is taken into account.Comment: Latex, 20page
    corecore