94 research outputs found

    Characterization of the aldo-keto reductase 1C gene cluster on pig chromosome 10: possible associations with reproductive traits

    Get PDF
    BACKGROUND: The rate of pubertal development and weaning to estrus interval are correlated and affect reproductive efficiency of swine. Quantitative trait loci (QTL) for age of puberty, nipple number and ovulation rate have been identified in Meishan crosses on pig chromosome 10q (SSC10) near the telomere, which is homologous to human chromosome 10p15 and contains an aldo-keto reductase (AKR) gene cluster with at least six family members. AKRs are tissue-specific hydroxysteroid dehydrogenases that interconvert weak steroid hormones to their more potent counterparts and regulate processes involved in development, homeostasis and reproduction. Because of their location in the swine genome and their implication in reproductive physiology, this gene cluster was characterized and evaluated for effects on reproductive traits in swine. RESULTS: Screening the porcine CHORI-242 BAC library with a full-length AKR1C4 cDNA identified 7 positive clones and sample sequencing of 5 BAC clones revealed 5 distinct AKR1C genes (AKR1CL2 and AKR1C1 through 4), which mapped to 126–128 cM on SSC10. Using the IMpRH(7000rad )and IMNpRH2(12000rad )radiation hybrid panels, these 5 genes mapped between microsatellite markers SWR67 and SW2067. Comparison of sequence data with the porcine BAC fingerprint map show that the cluster of genes resides in a 300 kb region. Twelve SNPs were genotyped in gilts observed for age at first estrus and ovulation rate from the F8 and F10 generations of one-quarter Meishan descendants of the USMARC resource population. Age at puberty, nipple number and ovulation rate data were analyzed for association with genotypes by MTDFREML using an animal model. One SNP, a phenylalanine to isoleucine substitution in AKR1C2, was associated with age of puberty (p = 0.07) and possibly ovulation rate (p = 0.102). Two SNP in AKR1C4 were significantly associated with nipple number (p ≤ 0.03) and another possibly associated with age at puberty (p = 0.09). CONCLUSION: AKR1C genotypes were associated with nipple number as well as possible effects on age at puberty and ovulation rate. The estimated effects of AKR1C genotypes on these traits suggest that the SNPs are in incomplete linkage disequilibrium with the causal mutations that affect reproductive traits in swine. Further investigations are necessary to identify these mutations and understand how these AKR1C genes affect these important reproductive traits. The nucleotide sequence data reported have been submitted to GenBank and assigned accession numbers [GenBank:DQ474064–DQ474068, GenBank:DQ494488–DQ494490 and GenBank:DQ487182–DQ487184]

    Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones

    Get PDF
    BACKGROUND: In the last few years, microsatellites have become the most popular molecular marker system and have intensively been applied in genome mapping, biodiversity and phylogeny studies of livestock. Compared to single nucleotide polymorphism (SNP) as another popular marker system, microsatellites reveal obvious advantages. They are multi-allelic, possibly more polymorphic and cheaper to genotype. Calculations showed that a multi-allelic marker system always has more power to detect Linkage Disequilibrium (LD) than does a di-allelic marker system [1]. Traditional isolation methods using partial genomic libraries are time-consuming and cost-intensive. In order to directly generate microsatellites from large-insert libraries a sequencing approach with repeat-containing oligonucleotides is introduced. RESULTS: Seventeen porcine microsatellite markers were isolated from eleven PAC clones by targeted oligonucleotide-mediated microsatellite identification (TOMMI), an improved efficient and rapid flanking sequence-based approach for the isolation of STS-markers. With the application of TOMMI, an average of 1.55 (CA/GT) microsatellites per PAC clone was identified. The number of alleles, allele size distribution, polymorphism information content (PIC), average heterozygosity (H(T)), and effective allele number (N(E)) for the STS-markers were calculated using a sampling of 336 unrelated animals representing fifteen pig breeds (nine European and six Chinese breeds). Sixteen of the microsatellite markers proved to be polymorphic (2 to 22 alleles) in this heterogeneous sampling. Most of the publicly available (porcine) microsatellite amplicons range from approximately 80 bp to 200 bp. Here, we attempted to utilize as much sequence information as possible to develop STS-markers with larger amplicons. Indeed, fourteen of the seventeen STS-marker amplicons have minimal allele sizes of at least 200 bp. Thus, most of the generated STS-markers can easily be integrated into multilocus assays covering a broader separation spectrum. Linkage mapping results of the markers indicate their potential immediate use in QTL studies to further dissect trait associated chromosomal regions. CONCLUSION: The sequencing strategy described in this study provides a targeted, inexpensive and fast method to develop microsatellites from large-insert libraries. It is well suited to generate polymorphic markers for selected chromosomal regions, contigs of overlapping clones and yields sufficient high quality sequence data to develop amplicons greater than 250 bases

    Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones

    Get PDF
    Background: In the last few years, microsatellites have become the most popular molecular marker system and have intensively been applied in genome mapping, biodiversity and phylogeny studies of livestock. Compared to single nucleotide polymorphism (SNP) as another popular marker system, microsatellites reveal obvious advantages. They are multi-allelic, possibly more polymorphic and cheaper to genotype. Calculations showed that a multi-allelic marker system always has more power to detect Linkage Disequilibrium (LD) than does a di-allelic marker system [1]. Traditional isolation methods using partial genomic libraries are time-consuming and costintensive. In order to directly generate microsatellites from large-insert libraries a sequencing approach with repeat-containing oligonucleotides is introduced. Results: Seventeen porcine microsatellite markers were isolated from eleven PAC clones by targeted oligonucleotide-mediated microsatellite identification (TOMMI), an improved efficient and rapid flanking sequence-based approach for the isolation of STS-markers. With the application of TOMMI, an average of 1.55 (CA/GT) microsatellites per PAC clone was identified. The number of alleles, allele size distribution, polymorphism information content (PIC), average heterozygosity (HT), and effective allele number (NE) for the STS-markers were calculated using a sampling of 336 unrelated animals representing fifteen pig breeds (nine European and six Chinese breeds). Sixteen of the microsatellite markers proved to be polymorphic (2 to 22 alleles) in this heterogeneous sampling. Most of the publicly available (porcine) microsatellite amplicons range from approximately 80 bp to 200 bp. Here, we attempted to utilize as much sequence information as possible to develop STS-markers with larger amplicons. Indeed, fourteen of the seventeen STS-marker amplicons have minimal allele sizes of at least 200 bp. Thus, most of the generated STS-markers can easily be integrated into multilocus assays covering a broader separation spectrum. Linkage mapping results of the markers indicate their potential immediate use in QTL studies to further dissect trait associated chromosomal regions. Conclusion: The sequencing strategy described in this study provides a targeted, inexpensive and fast method to develop microsatellites from large-insert libraries. It is well suited to generate polymorphic markers for selected chromosomal regions, contigs of overlapping clones and yields sufficient high quality sequence data to develop amplicons greater than 250 base

    Effects of Farrowing Stall Layout and Number of Heat Lamps on Sow and Piglet Production Performance

    Get PDF
    Most farrowing facilities in the United States use stalls and heat lamps to improve sow and piglet productivity. This study investigated these factors by comparing production outcomes for three different farrowing stall layouts (traditional, expanded creep area, expanded sow area) and use of one or two heat lamps. Data were collected on 427 sows and their litters over one year. Results showed no statistical differences due to experimental treatment for any of the production metrics recorded, excluding percent stillborn. Parity one sows had fewer piglets born alive (p \u3c 0.001), lower percent mortality (p = 0.001) and over-lay (p = 0.003), and a greater number of piglets weaned (p \u3c 0.001) with lower average daily weight gain (ADG) (p \u3c 0.001) and more uniform litters (p = 0.001) as compared to higher parity sows. Farrowing turn, associated with group/seasonal changes, had a significant impact on most of the production metrics measured. Number of piglets born influenced the percent stillborn (p \u3c 0.001). Adjusted litter size had a significant impact on percent mortality (p \u3c 0.001), percent over-lay (p \u3c 0.001), and number of piglets weaned (p \u3c 0.001). As the number of piglets weaned per litter increased, both piglet ADG and litter uniformity decreased (p \u3c 0.001). This information can be used to guide producers in farrowing facility design

    Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population

    Get PDF
    The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell–cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of glycosaminoglycans, including heparan sulfate and hyaluronan. Heparanase (HPSE) and hyaluronidases (HYAL) are responsible for degrading heparan sulfate and hyaluronan, respectively. Therefore, the objective of this study was to evaluate the relationship of SNPs distinct to HPSE, HYAL1, and HYAL2 with measurements of reproduction and production traits in swine. Single trait associations were performed on a Landrace–Duroc–Yorkshire population using SNPs discovered and identified in HPSE, HYAL1, and HYAL2. Analyses were conducted on an extended pedigree and SNPs were found to be associated with reproductive and production traits. Prior to multiple-testing corrections, SNPs within HPSE were weakly associated (P < 0.03) having additive effects with age at puberty (−2.5 ± 1.08 days), ovulation rate (0.5 ± 0.24 corpora lutea), and number of piglets born alive (0.9 ± 0.44 piglets). A HYAL1 and two HYAL2 SNP were nominally associated (P ≤ 0.0063) with number of piglets born alive after multiple-testing corrections (effects between 1.02 and 1.44 piglets), while one of the same HYAL2 markers maintained a modest association (P = 0.0043) having a dominant effect with number of piglets weaned (1.2 ± 0.41 piglets) after multiple-testing correction. Functionally, HPSE and HYAL1 and 2 have been shown to participate in events related to ovarian and placental activity. SNPs from these studies could potentially assist with understanding genetic components underlying sow lifetime productivity as measured by piglet survivability based on number born alive and number weaned, thereby contributing to a greater number of pigs/sow/year

    Adjoint sensitivity analysis in nuclear reactor fuel behavior modeling

    Full text link
    A computer program, SCODE, has been developed for calculating sensitivities for EPRI's SPEAR-ALPHA nuclear fuel performance code FCODE-ALPHA. Eleven critical parameters are assessed for the effects of their independent variations on 33 basic variables in the FCODE-ALPHA model. The enormous wealth of sensitivities that result, consisting of 363 quantities per axial node per time step, are calculated following FCODE-ALPHA computations on each time step. SCODE is based on adjoint sensitivity analysis, which is an analytic technique, obviating the need for numerical differentiation via repeated code runs at varied parameter values. Evaluation of sensitivities is reduced to a problem in linear algebra and is handled by standard matrix manipulations. Compared with the customary numerical differentiation approach, SCODE offers advantages of significant runtime reduction, exactitude of results, and on-line computation of sensitivities.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24288/1/0000554.pd

    Perspectives for artificial insemination and genomics to improve global swine populations

    Get PDF
    Civilizations throughout the world continue to depend on pig meat as an important food source. Approximately 40% of the red meat consumed annually worldwide (94 million metric tons) is pig meat. Pig numbers (940 million) and consumption have increased consistent with the increasing world population (FAO 2002). In the past 50 years, research guided genetic selection and nutrition programs have had a major impact on improving carcass composition and efficiency of production in swine. The use of artificial insemination (AI) in Europe has also had a major impact on pig improvement in the past 35 years and more recently in the USA. Several scientific advances in gamete physiology and/or manipulation have been successfully utilized while others are just beginning to be applied at the production level. Semen extenders that permit the use of fresh semen for more than 5 days post-collection are largely responsible for the success of AI in pigs worldwide. Transfer of the best genetics has been enabled by use of AI with fresh semen, and to some extent, by use of AI with frozen semen over the past 25 years. Sexed semen, now a reality, has the potential for increasing the rate of genetic progress in AI programs when used in conjunction with newly developed low sperm number insemination technology. Embryo cryopreservation provides opportunities for international transport of maternal germplasm worldwide; non-surgical transfer of viable embryos in practice is nearing reality. While production of transgenic animals has been successful, the low level of efficiency in producing these animals and lack of information on multigene interactions limit the use of the technology in applied production systems. Technologies based on research in functional genomics, proteomics and cloning have significant potential, but considerable research effort will be required before they can be utilized for AI in pig production. In the past 15 years, there has been a coordinated worldwide scientific effort to develop the genetic linkage map of the pig with the goal of identifying pigs with genetic alleles that result in improved growth rate, carcass quality, and reproductive performance. Molecular genetic tests have been developed to select pigs with improved traits such as removal of the porcine stress (RYR1) syndrome, and selection for specific estrogen receptor (ESR) alleles. Less progress has been made in developing routine tests related to diseases. Major research in genomics is being pursued to improve the efficiency of selection for healthier pigs with disease resistance properties. The sequencing of the genome of the pig to identify new genes and unique regulatory elements holds great promise to provide new information that can be used in pig production. AI, in vitro embryo production and embryo transfer will be the preferred means of implementing these new technologies to enhance efficiency of pig production in the future

    Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine microarrays is presented. A linear mixed model analysis was used to identify significant breed-by-probe interactions.</p> <p>Results</p> <p>Gene specific linear mixed models were fit to each of the log<sub>2 </sub>transformed probe intensities on these arrays, using fixed effects for breed, probe, breed-by-probe interaction, and a random effect for array. After surveying the day 25 placental transcriptome, 857 probes with a q-value ≤ 0.05 and |fold change| ≥ 2 for the breed-by-probe interaction were identified as candidates containing SFP. To address the quality of the bioinformatics approach, universal pyrosequencing assays were designed from Affymetrix exemplar sequences to independently assess polymorphisms within a subset of probes for validation. Additionally probes were randomly selected for sequencing to determine an unbiased confirmation rate. In most cases, the 25-mer probe sequence printed on the microarray diverged from Meishan, not occidental crosses. This analysis was used to define a set of highly reliable predicted SFPs according to their probability scores.</p> <p>Conclusion</p> <p>By applying a SFP detection method to two mammalian breeds for the first time, we detected transition and transversion single nucleotide polymorphisms, as well as insertions/deletions which can be used to rapidly develop markers for genetic mapping and association analysis in species where high density genotyping platforms are otherwise unavailable.</p> <p>SNPs and INDELS discovered by this approach have been publicly deposited in NCBI's SNP repository dbSNP. This method is an attractive bioinformatics tool for uncovering breed-by-probe interactions, for rapidly identifying expressed SNPs, for investigating potential functional correlations between gene expression and breed polymorphisms, and is robust enough to be used on any Affymetrix gene expression platform.</p

    Evaluation of genotype quality parameters for \u3ci\u3eSowPro90\u3c/i\u3e, a new genotyping array for swine

    Get PDF
    Understanding early predictors of sow fertility has the potential to improve genomic predictions. A custom SNP array (SowPro90 produced by Affymetrix) was developed to include genetic variants overlapping quantitative trait loci for age at puberty, one of the earliest indicators of sow fertility, as well as variants related to innate and adaptive immunity. The polymorphisms included in the custom genotyping array were identified using multiple genomic approaches including deep genomic and transcriptomic sequencing and genome-wide associations. Animals from research and commercial populations (n = 2,586) were genotyped for 103,476 SNPs included in SowPro90. To assess the quality of data generated, genotype concordance was evaluated between the SowPro90 and Porcine SNP60 BeadArray using a subset of common SNP (n = 44,708) and animals (n = 277). The mean genotype concordance rate per SNP was 98.4%. Differences in distribution of data quality were observed between the platforms indicating the need for platform specific thresholds for quality parameters. The optimal thresholds for SowPro90 (≥97% SNP and ≥93% sample call rate) were obtained by analyzing the data quality distribution and genotype concordance per SNP across platforms. At ≥97% SNP call rate, there were 42,151 SNPs (94.3%) retained with a mean genotype concordance of 98.6% across platforms. Similarly, ≥94% SNPs and ≥85% sample call rates were established as thresholds for Porcine SNP60 BeadArray. At ≥94% SNPs call rate, there were 41,043 SNPs (91.8%) retained with a mean genotype concordance of 98.6% across platforms. Final evaluation of SowPro90 array content (n = 103,476) at ≥97% SNPs and ≥93% sample call rates allowed retention of 89,040 SNPs (86%) for downstream analysis. The findings and strategy for quality control could be helpful in identifying consistent, high-quality genotypes for genomic evaluations, especially when integrating genotype data from different platforms

    Genomic regions associated with kyphosis in swine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A back curvature defect similar to kyphosis in humans has been observed in swine herds. The defect ranges from mild to severe curvature of the thoracic vertebrate in split carcasses and has an estimated heritability of 0.3. The objective of this study was to identify genomic regions that affect this trait.</p> <p>Results</p> <p>Single nucleotide polymorphism (SNP) associations performed with 198 SNPs and microsatellite markers in a Duroc-Landrace-Yorkshire resource population (U.S. Meat Animal Research Center, USMARC resource population) of swine provided regions of association with this trait on 15 chromosomes. Positional candidate genes, especially those involved in human skeletal development pathways, were selected for SNP identification. SNPs in 16 candidate genes were genotyped in an F2 population (n = 371) and the USMARC resource herd (n = 1,257) with kyphosis scores. SNPs in <it>KCNN2 </it>on SSC2, <it>RYR1 </it>and <it>PLOD1 </it>on SSC6 and <it>MYST4 </it>on SSC14 were significantly associated with kyphosis in the resource population of swine (<it>P </it>≤ 0.05). SNPs in <it>CER1 </it>and <it>CDH7 </it>on SSC1, <it>PSMA5 </it>on SSC4, <it>HOXC6 </it>and <it>HOXC8 </it>on SSC5, <it>ADAMTS18 </it>on SSC6 and <it>SOX9 </it>on SSC12 were significantly associated with the kyphosis trait in the F2 population of swine (<it>P </it>≤ 0.05).</p> <p>Conclusions</p> <p>These data suggest that this kyphosis trait may be affected by several loci and that these may differ by population. Carcass value could be improved by effectively removing this undesirable trait from pig populations.</p
    corecore