6 research outputs found

    Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca5(PO4)3Cl) using the flux growth method

    Full text link
    We present a new strategy on how to synthesize trace-element bearing (REE, Sr) chlorapatites Ca5(PO4)3Cl using the flux growth method. Synthetic apatites were up to several mm long, light blue in colour. The apatites were characterized using XRD, electron microprobe and laser ablation ICP-MS (LA-ICPMS) techniques and contained several hundred ÎĽg/g La, Ce, Pr, Sm, Gd and Lu and about 1700 ÎĽg/g Sr. The analyses indicate that apatites were homogenous (within the uncertainties) for major and trace elements

    New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements

    Get PDF
    The low-temperature heat capacities of nickel titanate (NiTiO3), cobalt titanate (CoTiO3), and cobalt carbonate (CoCO3) were measured between 2 and 300 K, and thermochemical functions were derived from the results. Our new data show previously unknown low-temperature lambda-shaped heat capacity anomalies peaking at 37 K for CoTiO3 and 26 K for NiTiO3. From our data we calculate standard molar entropies (298.15 K) for NiTiO3 of 90.9 ± 0.7 J mol-1 K-1 and for CoTiO3 of 94.4 ± 0.8 J mol-1 K-1. For CoCO3, we find only a small broad heat capacity anomaly, peaking at about 31 K. From our data, we suggest a new standard entropy (298.15 K) for CoCO3 of 88.9 ± 0.7 J mol-1 K-1

    High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments

    No full text
    The exceptional performance of some High Entropy Alloys (HEAs) under extreme conditions holds out the possibility of new and exciting materials for engineers to exploit in future applications. In this work, instead of focusing solely on the effects of high temperature on HEAs, the effects of combined high temperature and high pressure were observed. Phase transformations occurring in a pristine HEA, the as-cast bcc–Al2_2CoCrFeNi, are heavily influenced by temperature, pressure, and by scandium additions. As-cast bcc–Al2_2CoCrFeNi and fcc–Al0.3_{0.3}CoCrFeNi HEAs are structurally stable below 60 GPa and do not undergo phase transitions. Addition of scandium to bcc–Al2_2CoCrFeNi results in the precipitation of hexagonal AlScM intermetallic (W-phase), which dissolves in the matrix after high-pressure high-temperature treatment. Addition of scandium and high-pressure sintering improve hardness and thermal stability of well-investigated fcc- and bcc- HEAs. The dissolution of the intermetallic in the main phase at high pressure suggests a new strategy in the design and optimization of HEAs
    corecore