4 research outputs found
Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii
Mosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with a high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high-quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analyzed whole genomes of 1142 individual mosquitoes sampled from the wild in 13 African countries, as well as a further 234 individuals comprising parents and progeny of 11 laboratory crosses. The data resource includes high-confidence single-nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We use these data to analyze genetic population structure and characterize genetic diversity within and between populations. We illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance and for accelerating research and development of new vector control tools. It also provides a unique resource for the study of population genomics and evolutionary biology in eukaryotic species with high levels of genetic diversity under strong anthropogenic evolutionary pressures
Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus
Vector population control using insecticides is a key element of current strategies to prevent
malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate
pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance
driven by the highly diverse Anopheles genomes. Here, we use a population genomic
approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors
Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single
non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key
resistance diagnostic in an A. coluzzii population from Coˆte d’Ivoire that we used for
sequence-based association mapping, with replication in other West African populations.
The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved
in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily
due to selection imposed by other organophosphate or carbamate insecticides. Our findings
highlight the predictive value of this complex resistance haplotype for phenotypic resistance
and clarify its evolutionary history, providing tools to for molecular surveillance of the current
and future effectiveness of pirimiphos-methyl based interventions
Genetic diversity of the African malaria vector Anopheles gambiae
International audienceThe sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes, which transmit the disease1. To gain a deeper understanding of how mosquito populations are evolving, here we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, and identified over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide-resistance genes, with several sweeps spreading over large geographical distances and between species. The design of new tools for mosquito control using gene-drive systems will need to take account of high levels of genetic diversity in natural mosquito populations
Genetic diversity of the African malaria vector Anopheles gambiae
The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes, which transmit the disease1. To gain a deeper understanding of how mosquito populations are evolving, here we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, and identified over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide-resistance genes, with several sweeps spreading over large geographical distances and between species. The design of new tools for mosquito control using gene-drive systems will need to take account of high levels of genetic diversity in natural mosquito populations