4 research outputs found
Mosaic RBD nanoparticles induce intergenus cross-reactive antibodies and protect against SARS-CoV-2 challenge
Recurrent spillovers of α- and β-coronaviruses (CoV) such as severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome-CoV, SARS-CoV-2, and possibly human CoV have caused serious morbidity and mortality worldwide. In this study, six receptor-binding domains (RBDs) derived from α- and β-CoV that are considered to have originated from animals and cross-infected humans were linked to a heterotrimeric scaffold, proliferating cell nuclear antigen (PCNA) subunits, PCNA1, PCNA2, and PCNA3. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens, like jewels in a crown. Prime-boost immunizations with 6RBD-np in mice induced significantly high Ab titers against RBD antigens derived from α- and β-CoV and increased interferon (IFN-γ) production, with full protection against the SARS-CoV-2 wild type and Delta challenges. The mosaic 6RBD-np has the potential to induce intergenus cross-reactivity and to be developed as a pan-CoV vaccine against future CoV spillovers.</jats:p
Impact of Ternary Solvent on the Grain Size and Defects of Perovskite Layer to Realize a Stable Morphology for Efficient Inverted Solar Cells
Recent reports reveal that a smooth and uniform surface morphology can endow perovskite solar cells with excellent stability and remarkable power conversion efficiency (PCE). Herein, a ternary solvent strategy is employed using dimethylformamide (DMF), dimethyl-sulfoxide (DMSO), and γ-butyrolactone (GBL) to improve contact between the charge transporting layers and the perovskite layer. This approach yields enhanced surface morphology, charge extraction, and passivation. The thermally stable intermediates generated through the ternary solvent promote uniform MAPbI3 films with a smooth surface. These intermediates reduce surface roughness, increase grain size, and fill voids or defects in MAPbI3 due to a strong interaction of ternary solvent. The PCE with the ternary solvent (DMF:GBL:DMSO) increases to 20.23% compared to binary solvents of GBL:DMSO and DMF:DMSO. Additionally, ternary solvent engineering is beneficial from an industrial perspective for achieving a stable and uniform morphology of perovskite in large-area device fabrication. © 2023 Wiley-VCH GmbH.FALS