1,788 research outputs found

    A highly sensitive and selective viral protein detection method based on RNA oligonucleotide nanoparticle

    Get PDF
    Globally, approximately 170 million people (representing approximately 3% of the population worldwide), are infected with hepatitis C virus (HCV) and at risk of serious liver disease, including chronic hepatitis. We propose a new quantum dots (QDs)-supported RNA oligonucleotide approach for the specific and sensitive detection of viral protein using a biochip. This method was developed by immobilizing a HCV nonstructural protein 5B (NS5B) on the surface of a glass chip via the formation of a covalent bond between an amine protein group and a ProLinker™ glass chip. The QDs-supported RNA oligonucleotide was conjugated via an amide formation reaction from coupling of a 5′-end-amine-modified RNA oligonucleotide on the surface of QDs displaying carboxyl groups via standard EDC coupling. The QDs-conjugated RNA oligonucleotide was interacted to immobilized viral protein NS5B on the biochip. The detection is based on the variation of signal of QDs-supported RNA oligonucleotide bound on an immobilized biochip. It was demonstrated that the value of the signal has a linear relationship with concentrations of the HCV NS5B viral protein in the 1 μg mL−1 to 1 ng mL−1 range with a detection limit of 1 ng mL−1. The major advantages of this RNA-oligonucleotide nanoparticle assay are its good specificity, ease of performance, and ability to perform one-spot monitoring. The proposed method could be used as a general method of HCV detection and is expected to be applicable to other types of diseases as well

    Physiological and subjective burden when wearing fire protective boots between 3.2 and 5.3kg

    Get PDF
    This study investigated the effects of weight increase of firefighters boots on physiological and psychological strain. Seven young males (70.9 ± 4.8kg in body mass, BM) participated in the following four boot conditions while wearing standard firefighting personal protective equipment: 3.2, 3.9, 4.6, and 5.3kg (4.5, 5.5, 6.5, and 7.5%BM). The results showed that the four boot conditions resulted in no differences in rectal temperature, mean skin temperature, energy expenditure and overall thermal comfort during walking, while increments in heart rate were greater for 5.3kg than for other three conditions (P < 0.05). Subjects felt less warm and had less uncomfortable feet during exercise for the 3.2kg condition compared to the three other heavier conditions (P < 0.05). These results indicate that psychological strain due to the load carried on the feet appeared earlier (between 4.5 to 5.5%BM) than physiological strain in terms of heart rate (between 6.5 to 7.5%BM). We finally suggest a 5% body mass upper limit for boot weight because subjective strain of the feet may be a valuable preliminary alarm for the physiological strain of firefighters wearing heavy boots.This research was supported by the Fire Fighting Safety &119 Rescue Technology Research and Development Program funded by the Ministry of Public Safety and Security [MPSS-Fire Fighting Safety-2015–76 and MPSS-Fire Fighting Safety-2015–82], and Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No.2016M3A7B4910)

    A New Hardware Correlator in Korea: Performance Evaluation using KVN observations

    Full text link
    We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conducted Very Long Baseline Interferometry (VLBI) observations at 22~GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compared the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigated the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs show that they are consistent with each other within <8%<8\%, which is comparable with the amplitude calibration uncertainties of KVN observations at 22~GHz. We also found that the 8\% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3\%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.Comment: 13 pagee, 9 figures, 3 tables, to appear in JKAS (received February 9, 2015; accepted March 16, 2015

    Sequential Magnetic Resonance Imaging Finding of Intramedullary Spinal Cord Abscess including Diffusion Weighted Image: a Case Report

    Get PDF
    Intramedullary spinal cord abscess (ISCA) is a rare infection of the central nervous system. We describe the magnetic resonance imaging (MRI) findings, including the diffusion-weighted imaging (DWI) findings, of ISCA in a 78-year-old man. The initial conventional MRI of the thoracic spine demonstrated a subtle enhancing nodule accompanied by significant edema. On the follow-up MRI after seven days, the nodule appeared as a ring-enhancing nodule. The non-enhancing central portion of the nodule appeared hyperintense on DWI with a decreased apparent diffusion coefficient (ADC) value on the ADC map. We performed myelotomy and surgical drainage, and thick, yellowish pus was drained

    Nuclear transfer by Using a Laser-Assisted Zona Pellucida Piercing Technique in Mice

    Get PDF
    Somatic cells nuclear transfer (SCNT) is a useful tool in studies of developmental biology and animal cloning. However, SCNT experiments only are allowed to skilled technical experts. In this experiment, laser-assisted zona pellucida piercing tool (LASER) was applied in murine SCNT. LASER minimized the use of piezo-driven micromanipulator (PIEZO), reducing chances of problems caused by PIEZO pulses. LASER reduced time that took to pierce zona pellucida in removal of nucleus from oocyte and somatic cell injection, which might have taken longer time with PIEZO. Time and difficulties that took researcher of equivalent skilled for their experiments were decreased with LASER, and this might affect the improvement of embryonic development. (LASER, 6.2% versus PIEZO, 2.9%; P< 0.05). Thus, these data support that the use of LASER can be used for zona pellucida piercing in murine SCNT program as an alternative to PIEZO
    • …
    corecore