43 research outputs found

    Biomethane use in Sweden

    No full text
    Transport is responsible for around a quarter of EU greenhouse gas emissions making it the second biggest greenhouse gas emitting sector after energy. Biogas is one of the cleanest and most versatile renewable fuels available today, answering on challenges of EU sustainable development strategies. Upgraded biogas–biomethane–has the same advantages as natural gas, but additionally is a sustainable fuel that can be manufactured from local waste streams thereby also solving local waste problems. During the last years, the production and use of biomethane has significantly increased in many European countries. Sweden is world leading both in terms of automotive use of biomethane and its non-grid based transportation

    New thermoplastic poly(carbonate-urethane) elastomers

    No full text
    Two series of novel thermoplastic poly(carbonate-urethane) elastomers, with different hard-segment content (30 - 60 wt %), were synthesized by melt polymerization from poly(hexane-1,6-diyl carbonate) diol of Mn = 2000 as a soft segment, 4,4'-diphenylmethane diisocyanate (MDI) or hexane-1,6-diyl diisocyanate (HDI) and 6,6'-[methylenebis(1,4-phenylenemethylenethio)]dihexan-1-ol as a chain extender. The structure and basic properties of the polymers were examined by Fourier transform infrared spectroscopy, X-ray diffraction analysis, atomic force microscopy, differential scanning calorimetry, thermogravimetric analysis, Shore hardness and tensile tests. The resulting TPUs were colorless polymers, showing almost amorphous structures. The MDI-based TPUs showed higher tensile strengths (up to 21.3 MPa vs. 15.8 MPa) and elongations at break (up to 550% vs. 425%), but poorer low-temperature properties than the HDI-based analogs

    New thermoplastic poly(carbonate-urethane) elastomers

    No full text
    Two series of novel thermoplastic poly(carbonate-urethane) elastomers, with different hard-segment content (30 - 60 wt %), were synthesized by melt polymerization from poly(hexane-1,6-diyl carbonate) diol of Mn = 2000 as a soft segment, 4,4'-diphenylmethane diisocyanate (MDI) or hexane-1,6-diyl diisocyanate (HDI) and 6,6'-[methylenebis(1,4-phenylenemethylenethio)]dihexan-1-ol as a chain extender. The structure and basic properties of the polymers were examined by Fourier transform infrared spectroscopy, X-ray diffraction analysis, atomic force microscopy, differential scanning calorimetry, thermogravimetric analysis, Shore hardness and tensile tests. The resulting TPUs were colorless polymers, showing almost amorphous structures. The MDI-based TPUs showed higher tensile strengths (up to 21.3 MPa vs. 15.8 MPa) and elongations at break (up to 550% vs. 425%), but poorer low-temperature properties than the HDI-based analogs

    Development prospects of biorefinery technologies

    No full text
    W pracy scharakteryzowano koncepcję działania biorafinerii. Przedstawiono różne typy systemów biorafineryjnych na świecie, wytwarzających różne bioprodukty (biopaliwa, biopłyny, biochemikalia itp.) i energię. Zaprezentowano autorską koncepcję biorafinerii możliwą do wdrożenia w warunkach polskich.The paper presents description of the concept of a biorefinery platform. Different types of world biorefinery systems, producing a variety of bioproducts (biofuels, bioliquids, biochemicals, etc.) and energy are presented. An original concept of biorefineries possible to implement in Polish conditions was developed by authors

    Biorefinery systems – potential contributors to sustainable innovation

    No full text
    Sustainable biorefineries have a critical role to play in our common future. The need to provide more goods using renewable resources, combined with advances in science and technology, has provided a receptive environment for biorefinery systems development. Biorefineries offer the promise of using fewer non-renewable resources, reducing CO2 emissions, creating new employment, and spurring innovation using clean and efficient technologies. Lessons are being learned from the establishment of first-generation biofuel operations. The factors that are key to answering the question of biorefinery sustainability include: the type of feedstock, the conversion technologies and their respective conversion and energy efficiencies, the types of products (including coproducts) that are manufactured, and what products are substituted by the bioproducts. The BIOPOL review of eight existing biorefineries indicates that new efficient biorefineries can revitalize existing industries and promote regional development, especially in the R&D area. Establishment can be facilitated if existing facilities are used, if there is at least one product which is immediately marketable, and if supportive policies are in place. Economic, environmental, and social dimensions need to be evaluated in an integrated sustainability assessment. Sustainability principles, criteria, and indicators are emerging for bioenergy, biofuels, and bioproducts. Practical assessment methodologies, including data systems, are critical for both sustainable design and to assure consumers, investors, and governments that they are doing the ‘right thing’ by purchasing a certain bioproduct. If designed using lifecycle thinking, biorefineries can be profitable, socially responsible, and produce goods with less environmental impact than conventional products … and potentially even be restorative!
    corecore