29 research outputs found

    Geochemical and Mineralogical Characteristics of Airborne Particulate Matter in Relation to Human Health Risk

    Get PDF
    The main objective of this research was the determination of the geochemical and mineralogical properties of particulate matter: TSP (total suspended particles) and, especially PM1 (particles with aerodynamic diameter not greater than 1 µm) suspended in the air of a selected urban area in southern Poland. Identification of the emission sources of metals and metalloids bound in TSP and PM1 as well as the assessment of potential risk of urban ambient air to human health using hazard indices was an additional aim of this investigation. The daily TSP and PM1 quartz fiber filters collected during heating season were subjected to mass magnetic susceptibility (χ) measurements, SEM (Scanning Electron Microscopy) observations and geochemical analyses. Obtained results revealed that the concentration of TSP and PM1 well correlated with their mass-specific magnetic susceptibility. The good relationship between the PM concentration and χ suggests that magnetic susceptibility measurements can be a good proxy of low-level atmospheric dust pollution. The rank order of potentially toxic elements (PTE) based on average concentration was Ba > Zn > Al > Fe > Pb > Mn > Ti > Cu > Cr > Ni >As > Cd > V > Tl, both for TSP and PM1. PM1/TSP ratios for PTE concentrations and χ were around or slightly above unity, which indicated that PM1 was the main carrier of PTE (with the exception of cadmium, copper and lead) and technogenic magnetic particles. The non-carcinogenic and carcinogenic risks were confirmed by very high values of human health indices

    Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    No full text
    The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air

    Optical Properties of Fine Particulate Matter in Upper Silesia, Poland

    No full text
    Ambient particles whose aerodynamic diameters were not greater than 2.5 µm (fine fraction of Particulate Matter; PM2.5) and 1 µm (PM1; sub-fraction of PM2.5) were sampled at three sites in Upper Silesia (Poland): urban background site, rural background site, and urban traffic site. In total, 240 samples were collected between 2 August 2009 and 27 December 2010. The reflectance of the collected PM1 and PM2.5 samples was determined with a digital smoke stain reflectometer. The 24-h courses and seasonal changes of three determined optical parameters for PM1 and PM2.5 (absorption coefficient (a), mass absorption (σ), and mean light reflection coefficient (Rav)) were illustrated and discussed. The mean values of the regional background absorption coefficient (a) were 1.27 × 10−5 m−1 and 0.87 × 10−5 m−1 for PM2.5 and PM1, respectively. In Katowice (urban background), the mean absorption levels were 2.37 × 10−5 m−1 and 2.09 × 10−5 m−1 for PM2.5 and PM1, respectively. The highest values of the absorption coefficient for both PM fractions were found close to the highway (urban traffic site). In the heating season (winter), the absorption coefficient (a) for PM2.5 and PM1 increased significantly when compared with the non-heating season. The obtained results confirmed the thesis about the significant increase in the elemental PM2.5-bound carbon concentration caused by the intensified hard coal combustion in Upper Silesia in winter. Moreover, it turned out that the increase in the concentration of the PM2.5-bound sulphates was even higher, which resulted in the relative decrease of the elemental carbon content in this PM fraction in some areas. Consequently, the mass absorption value dropped there as well

    POLYCYCLIC AROMATIC HYDROCARBONS IN VARIOUS FRANCTIONS OF AMBIENT PARTICULATE MATTER AT AREAS DOMINATED BY TRAFFIC EMISSION

    No full text
    The paper presents the results of the research of 16 polycyclic aromatic hydrocarbons (PAHs) associated with four fractions of particulate matter (PM, PM10, PM2,5 and PM1; fractions of particles whose aerodynamic diameter ranges from 30 nm to respectively: 100, 10, 2.5 and 1 µm) conducted at points located on the side of a highway and at a busy crossroads in Katowice. The highway research was carried out in the spring, and the crossroads research in the summer of 2012. Samples were taken by low pressure impactor DEKATI. The analysis of PAHs in ambient particulate matter samples was performed by gas chromatography. The average concentration of the sum of 16 PAH associated with PM, which amounted to 14.6 ng/m3 in the spring, was two times higher than in the summer. This concentration was a few or even several times lower than the levels recorded earlier in the cities of southern Poland in the winter. Meanwhile, indicators of toxicity, mutagenicity and carcinogenicity calculated for PAH at the highway and the crossroads were high. This indicates high health risk generated by the presence of PAHs in the Katowice air also in spring and summer time. The values of diagnostic ratio, roughly showing the origin of PAHs associated with the PM, confirmed that during the period of the research transportation was the main source of PAHs in both points of Katowice

    Short review on PM-bound water. Its presence in the atmosphere, forms of occurrence and determination by Karl Fischer coulometric titration

    No full text
    Literature data indicate, that the conversion of secondary PM (particulate matter) precursors are largely controlled by the amount of atmospheric water vapor, and that higher capacity of water accumulation is demonstrated mainly by fine particles of anthropogenic origin, rich in ionic compounds like sulfates, nitrates, ammonia and chlorides, arising for example from biomass incineration processes. Smaller retention capability is however typical for coarse PM particles of natural origin, containing lot of crustal material like aluminosilicates. It is therefore suspect that both – the size of PM particles and the source of its origin will determine its hygroscopicity. The quantitative and qualitative measurements of water contributions in PM for example by means of Karl Fischer titration method could be therefore a good marker of PM origin. Due to analytical limitations the identification of water contents in PM and the differences in water fingerprint between PM collected in different locations is still quite challenging

    Short review on PM-bound water. Its presence in the atmosphere, forms of occurrence and determination by Karl Fischer coulometric titration

    No full text
    Literature data indicate, that the conversion of secondary PM (particulate matter) precursors are largely controlled by the amount of atmospheric water vapor, and that higher capacity of water accumulation is demonstrated mainly by fine particles of anthropogenic origin, rich in ionic compounds like sulfates, nitrates, ammonia and chlorides, arising for example from biomass incineration processes. Smaller retention capability is however typical for coarse PM particles of natural origin, containing lot of crustal material like aluminosilicates. It is therefore suspect that both – the size of PM particles and the source of its origin will determine its hygroscopicity. The quantitative and qualitative measurements of water contributions in PM for example by means of Karl Fischer titration method could be therefore a good marker of PM origin. Due to analytical limitations the identification of water contents in PM and the differences in water fingerprint between PM collected in different locations is still quite challenging

    Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    No full text
    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc
    corecore