5 research outputs found

    Effect of cathode material and its size on the abundance of nitrogen removal functional genes in microcosms of integrated bioelectrochemical-wetland systems

    Get PDF
    Funding Information: Funding: This study was supported by the Estonian Research Council (PUTJD715, IUT2-16, PRG352 and PRG676); the EU through the European Regional Development Fund (Centre of Excellence EcolChange, Estonia) and by the European Structural and Investment Funds. The financial support from The French National Research Agency (ANR-17-CE04-0004) is gratefully acknowledged. The financial support from the International mobility support for PhD students–DrEAM (University of Lorraine) is gratefully acknowledged.Peer reviewedPublisher PD

    Challenges and applications of nitrate-reducing microbial biocathodes

    No full text
    International audienceBioelectrochemical systems which employ microbes as electrode catalysts to convert chemical energy into electrical energy (or conversely), have emerged in recent years for water sanitation and energy recovery. Microbial biocathodes, and especially those reducing nitrate are gaining more and more attention. The nitrate-reducing biocathodes can efficiently treat nitrate-polluted wastewater. However, they require specific conditions and they have not yet been applied on a large scale. In this review, the current knowledge on nitrate-reducing biocathodes will be summarized. The fundamentals of microbial biocathodes will be discussed, as well as the progress towards applications for nitrate reduction in the context of water treatment. Nitrate-reducing biocathodes will be compared with other nitrate-removal techniques and the challenges and opportunities of this approach will be identified

    Protein Arginine Methyltransferase (PRMT) Inhibitors—AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures

    No full text
    Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it

    Electrochemical analysis of a microbial electrochemical snorkel in laboratory and constructed wetlands

    No full text
    International audienceMicrobial electrochemical snorkel (MES) is a short-circuited microbial fuel cell applicable to water treatment that does not produce energy but requires lower cost for its implementation. Few reports have already described its water treatment capabilities but no deeper electrochemical analysis were yet performed. We tested various materials (iron, stainless steel and porous graphite) and configurations of snorkel in order to better understand the rules that will control in a wetland the mixed potential of this self-powered system. We designed a model snorkel that was studied in laboratory and on the field. We confirmed the development of MES by identifying anodic and cathodic parts, by measuring the current between them and by analyzing microbial ecology in laboratory and field experiments. An important application is denitrification of surface water. Here we discuss the influence of nitrate on its electrochemical response and denitrification performances. Introducing nitrate caused the increase of the mixed potential of MES and of current at a potential value relatively more positive than for nitrate-reducing biocathodes described in the literature. The major criteria for promoting application of MES in artificial wetland dedicated to mitigation of non-point source nitrate pollution from agricultural water are considered
    corecore