6 research outputs found

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Design and Beam Test Results of the Reentrant Cavity BPM for the European XFEL

    No full text
    International audienceThe European X-ray Free Electron Laser (E-XFEL) will use reentrant beam position monitors (BPMs) in about one quarter of the superconducting cryomodules. This BPM is composed of a radiofrequency (RF) reentrant cavity with 4 antennas and an RF signal processing electronics. Hybrid couplers, near the cryomodules, generate the analog sum and difference of the raw pickup signals coming from two pairs of opposite RF feedthroughs. The resulting sum (proportional to bunch charge) and difference signals (proportional to the product of position and charge) are then filtered, down-converted by an RF front-end (RFFE), digitized, and digitally processed on an FPGA board. The task of CEA/Saclay was to cover the design, fabrication and beam tests and deliver these reentrant cavity BPMs for the E-XFEL linac in collaboration with DESY and PSI. This paper gives an overview of the reentrant BPM sys-tem with focus on the last version of the RF front end electronics, signal processing, and overall system performance. Measurement results achieved with prototypes installed at the DESY FLASH2 linac and in the E-XFEL injector are presented

    First Experience with the Standard Diagnostics at the European XFEL Injector

    No full text
    International audienceThe injector of the European XFEL is in operation since December 2015. It includes, beside the gun and the accelerating section, containing 1.3 and a 3.9 GHz accelerating module, a variety of standard diagnostics systems specially designed for this facility. With very few exceptions, all types of diagnostics systems are installed in the injector. Therefore the operation of the injector is served to validate and prove the diagnostics characteristics for the complete European XFEL. Most of the standard diagnostics has been available for the start of beam operation and showed the evidence of first beam along the beam line. In the following months the diagnostics has been optimized and used for improvements of beam quality. First operational experiences and results from the standard beam diagnostics in the injector of the European XFEL will be reported in this contribution

    A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator

    No full text
    International audienceThe European XFEL is a hard X-ray free-electron laser (FEL) based on a high-electron-energy superconducting linear accelerator. The superconducting technology allows for the acceleration of many electron bunches within one radio-frequency pulse of the accelerating voltage and, in turn, for the generation of a large number of hard X-ray pulses. We report on the performance of the European XFEL accelerator with up to 5,000 electron bunches per second and demonstrating a full energy of 17.5 GeV. Feedback mechanisms enable stabilization of the electron beam delivery at the FEL undulator in space and time. The measured FEL gain curve at 9.3 keV is in good agreement with predictions for saturated FEL radiation. Hard X-ray lasing was achieved between 7 keV and 14 keV with pulse energies of up to 2.0 mJ. Using the high repetition rate, an FEL beam with 6 W average power was created
    corecore