1,836 research outputs found
Non-invasive detection of molecular bonds in quantum dots
We performed charge detection on a lateral triple quantum dot with star-like
geometry. The setup allows us to interpret the results in terms of two double
dots with one common dot. One double dot features weak tunnel coupling and can
be understood with atom-like electronic states, the other one is strongly
coupled forming molecule-like states. In nonlinear measurements we identified
patterns that can be analyzed in terms of the symmetry of tunneling rates.
Those patterns strongly depend on the strength of interdot tunnel coupling and
are completely different for atomic- or molecule-like coupled quantum dots
allowing the non-invasive detection of molecular bonds.Comment: 4 pages, 4 figure
Interaction-Induced Spin Polarization in Quantum Dots
The electronic states of lateral many electron quantum dots in high magnetic
fields are analyzed in terms of energy and spin. In a regime with two Landau
levels in the dot, several Coulomb blockade peaks are measured. A zig-zag
pattern is found as it is known from the Fock-Darwin spectrum. However, only
data from Landau level 0 show the typical spin-induced bimodality, whereas
features from Landau level 1 cannot be explained with the Fock-Darwin picture.
Instead, by including the interaction effects within spin-density-functional
theory a good agreement between experiment and theory is obtained. The absence
of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure
Probing a Kondo correlated quantum dot with spin spectroscopy
We investigate Kondo effect and spin blockade observed on a many-electron
quantum dot and study the magnetic field dependence. At lower fields a
pronounced Kondo effect is found which is replaced by spin blockade at higher
fields. In an intermediate regime both effects are visible. We make use of this
combined effect to gain information about the internal spin configuration of
our quantum dot. We find that the data cannot be explained assuming regular
filling of electronic orbitals. Instead spin polarized filling seems to be
probable.Comment: 4 pages, 5 figure
Towards visualisation of central-cell-effects in scanning-tunnelling-microscope images of subsurface dopant qubits in silicon
Atomic-scale understanding of phosphorous donor wave functions underpins the
design and optimisation of silicon based quantum devices. The accuracy of
large-scale theoretical methods to compute donor wave functions is dependent on
descriptions of central-cell-corrections, which are empirically fitted to match
experimental binding energies, or other quantities associated with the global
properties of the wave function. Direct approaches to understanding such
effects in donor wave functions are of great interest. Here, we apply a
comprehensive atomistic theoretical framework to compute scanning tunnelling
microscopy (STM) images of subsurface donor wave functions with two
central-cell-correction formalisms previously employed in the literature. The
comparison between central-cell models based on real-space image features and
the Fourier transform profiles indicate that the central-cell effects are
visible in the simulated STM images up to ten monolayers below the silicon
surface. Our study motivates a future experimental investigation of the
central-cell effects via STM imaging technique with potential of fine tuning
theoretical models, which could play a vital role in the design of donor-based
quantum systems in scalable quantum computer architectures.Comment: Nanoscale 201
Linear and planar molecules formed by coupled P donors in silicon
Using the effective mass theory and the multi-valley envelope function
representation, we have developed a theoretical framework for computing the
single-electron electronic structure of several phosphorus donors interacting
in an arbitrary geometrical configuration in silicon taking into account the
valley-orbit coupling. The methodology is applied to three coupled phosphorus
donors, arranged in a linear chain and in a triangle, and to six donors
arranged in a regular hexagon. The results of the simulations evidence that the
valley composition of the single-electron states strongly depends on the
geometry of the dopant molecule and its orientation relative to the
crystallographic axes of silicon. The electron binding energy of the triatomic
linear molecules is larger than that of the diatomic molecule oriented along
the same crystallographic axis, but the energy gap between the ground state and
the first excited state is not significantly different for internuclear
distances from 1.5 to 6.6 nm. Three donor atoms arranged in a triangle geometry
have larger binding energies than a triatomic linear chain of dopants with the
same internuclear distances. The planar donor molecules are characterized by a
strong polarization in favor of the valleys oriented perpendicular to the plane
of the molecule. The polarization increases with number of atoms forming the
planar molecule
Enhanced tunneling across nanometer-scale metal-semiconductor interfaces
We have measured electrical transport across epitaxial, nanometer-sized
metal-semiconductor interfaces by contacting CoSi2-islands grown on Si(111)
with an STM-tip. The conductance per unit area was found to increase with
decreasing diode area. Indeed, the zero-bias conductance was found to be about
10^4 times larger than expected from downscaling a conventional diode. These
observations are explained by a model, which predicts a narrower barrier for
small diodes and therefore a greatly increased contribution of tunneling to the
electrical transport.Comment: 3 pages, 2 EPS-figures; accepted for publication in Appl. Phys. Let
Multiple transitions of the spin configuration in quantum dots
Single electron tunneling is studied in a many electron quantum dot in high
magnetic fields. For such a system multiple transitions of the spin
configuration are theoretically predicted. With a combination of spin blockade
and Kondo effect we are able to detect five regions with different spin
configurations. Transitions are induced with changing electron numbers.Comment: 4 pages, 5 figure
- …
