180 research outputs found

    Angiotensin II-receptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction

    Get PDF
    Angiotensin II (All) has been implicated as an important factor in the pathophysiology of heart diseases. Following the recent identification of two subtypes of the All receptor in cardiac tissue of animals, we investigated the possible occurrence of these, or similar, subtypes in human atrial tissue. In right-atrial tissue from patients undergoing heart surgery, we determined the All-receptor profile in receptor binding studies, using [125I]-angiotensin as radioligand and All as well as two compounds selective for the receptor subtypes to identify and quantify All-receptor subpopulations. In 35 patients (23 requiring coronary bypasses, 10 vaivular surgery and two combined coronary and valvular surgery), the left-ventricular ejection fraction was determined in the preoperative phase, and right- and left-atrial pressure during surgery. In membranes of human right atria, All receptors are present in high density (median: Bmax= 294 fmol. mg−1 protein, range: 111-2073) and two different subtypes can be distinguished. Type-1 receptors (AT1) accounted for 33 ± l0% of the population whereas type-2 receptors (AT2) made up 67 ± 10% of the population. There was no correlation between any of the measured cardiac functions and total All-receptor density or receptor affinity. However, the percentage of AT1 receptors was higher in the atria of patients with normal right-atrial pressure; left-ventricular ejection fraction was positively and right-atrial pressure inversely correlated with the percentage of AT1 receptors (r=0·740 and -0·901, respectively; P<0·001, for both). Moreover, the percentage of AT receptors was directly correlated with the levels of left-atrial pressure (r=0·853; P<0·001). It is concluded that the ratio of AT1 to AT2 receptors correlates well with right-atrial pressure and left-ventricular function. This is a first indication of a possible involvement of All-receptor subtypes in the pathophysiology of cardiac dysfunction

    Angiotensin II Receptor Subtypes and Cardiac Function

    Get PDF
    All the components of the renin-angiotensin system have been identified in the heart including the angiotensin II receptor subtypes AT1 and AT2 In the normal human heart, there is a decreasing receptor density from the right atrium to the left ventricle. In right atrial membranes prepared from pathological hearts, the percentage of AT1 receptor decreases with the severity of cardiac dysfunction whereas that of AT2 receptor increases. Treatment of hypertrophic rats with AT1 receptor antagonists inhibits cardiac hypertrophy and reverses the increase receptor density, indicating involvement of this Ang II receptor subtype. The role of the AT2 receptor is still largely unknown but it may be involved in cell growth and proliferation. The cloning of both AT1 and AT2 receptors as well as the availability of potent and selective antagonists will help us to understand better the functional role of Angiotensin II in cardiovascular disorder

    Effective Connectivity of Thalamocortical Interactions Following d-Amphetamine, LSD, and MDMA Administration

    Get PDF
    BACKGROUND: While the exploration of serotonergic psychedelics as psychiatric medicines deepens, so does the pressure to better understand how these compounds act on the brain. METHODS: We used a double-blind, placebo-controlled, crossover design and administered lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), and d-amphetamine in 25 healthy participants. By using spectral dynamic causal modeling, we mapped substance-induced changes in effective connectivity between the thalamus and different cortex types (unimodal vs. transmodal) derived from a previous study with resting-state functional magnetic resonance imaging data. Due to the distinct pharmacological modes of action of the 3 substances, we were able to investigate specific effects mainly driven by different neurotransmitter systems on thalamocortical and corticothalamic interactions. RESULTS: Compared with placebo, all 3 substances increased the effective connectivity from the thalamus to specific unimodal cortices, whereas the influence of these cortices on the thalamus was reduced. These results indicate increased bottom-up and decreased top-down information flow between the thalamus and some unimodal cortices. However, for the amphetamines, we found the opposite effects when examining the effective connectivity with transmodal cortices, including parts of the salience network. Intriguingly, LSD increased the effective connectivity from the thalamus to both unimodal and transmodal cortices, indicating a breach in the hierarchical organization of ongoing brain activity. CONCLUSIONS: The results advance our knowledge about the action of psychedelics on the brain and refine current models aiming to explain the underlying neurobiological processes

    Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus: Analysis of the calcineurin complex in Aspergillus fumigatus

    Get PDF
    Calcineurin, a heterodimer composed of the catalytic (CnaA) and regulatory (CnaB) subunits, plays key roles in growth, virulence, and stress responses of fungi. To investigate the contribution of CnaA and CnaB to hyphal growth and septation, ΔcnaB and ΔcnaA ΔcnaB strains of A. fumigatus were constructed. CnaA co-localizes to the contractile actin ring early during septation and remains at the center of the mature septum. While CnaB's septal localization is CnaA-dependent, CnaA's septal localization is CnaB-independent but CnaB is required for CnaA's function at the septum. Catalytic null mutations in CnaA caused stunted growth despite septal localization of the calcineurin complex, indicating the requirement of calcineurin activity at the septum. Compared to the ΔcnaA and ΔcnaB strains, the ΔcnaA ΔcnaB strain displayed more defective growth and aberrant septation. While three Ca2+-binding motifs in CnaB were sufficient for its association with CnaA at the septum, the amino-terminal arginine-rich domains (16-RRRR-19 and 44-RLRKR-48) are dispensable for septal localization, yet required for complete functionality. Mutation of the 51-KLDK-54 motif in CnaB causes its mislocalization from the septum to the nucleus, suggesting it is a nuclear export signal sequence. These findings confirm a cooperative role for calcineurin complex in regulating hyphal growth and septation

    Plasma Membrane Localization Is Required for RasA-Mediated Polarized Morphogenesis and Virulence of Aspergillus fumigatus

    Get PDF
    ABSTRACT Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB , but requires the palmitoyltransferase complex subunit, encoded by erfD . Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus
    • 

    corecore