184 research outputs found

    Multi-omic approaches to investigate molecular mechanisms in peach post-harvest ripening

    Get PDF
    Peach post-harvest ripening is a complex developmental process controlled by a plethora of genetic and epigenetic factors. Specifically, it leads to protein, lipid and nucleic acid degradation, all resulting in cell death. Substantial research has been directed at investigating peach regulatory mechanisms underlying genomic, metabolomic and transcriptomic modifications occurring during this stage, and much progress has been made thanks to the advent of Next Generation Sequencing technologies. This review is focused on the latest multi-omics studies, with the aim of highlighting the most significant results and further investigating the regulation of the key genes involved in peach post-harvest processes and related physiology. By offering an exhaustive overview of peach omics profiles, it provides a comprehensive description of gene expression changes and their correlation with ripening stages, including some post-harvest treatments, as well as with volatile organic compound modifications. However, the present work highlights that, due to the complexity of the process, recent investigations do not elucidate all underlying molecular mechanisms, making further studies still necessary. For this reason, some key points for future research activities and innovative peach breeding programs are discussed, relying on trusted multi-omic approaches

    Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data

    Get PDF
    AbstractRocket salad (Diplotaxis tenuifolia; wild rocket) is an important component of ready to eat salads providing a distinct peppery flavour and containing nutritionally relevant compounds. Quality deteriorates during post-harvest, in relation to time and storage temperature amongst other factors. Volatile organic compounds (VOCs) are easily measurable from rocket leaves and may provide useful quality indicators for e.g. changes in isothiocyanates derived from nutritionally important glucosinolates. VOC profiles discriminated storage temperatures (0, 5 and 10°C) and times (over 14days). More specifically, concentrations of aldehydes and isothiocyanates decreased with time paralleling a fall in vitamin C and a reduction in sensorial quality at the two higher temperatures. Sulphur containing compounds rise at later time-points and at higher temperatures coincident with an increase in microbial titre, mirroring a further drop in sensorial quality thus indicating their contribution to off-odours

    Using volatile organic compounds to monitor shelf-life in rocket salad

    Get PDF
    Rocket salad (Diplotaxis tenuifolia or Eruca sativa) is a perishable product of increasing interest due to its high content of nutritionally relevant compounds including glucosinolates and vitamin C. There is an increasing consumption of ready-to-eat salads which are sold to the consumer in bags, often packed under modified atmosphere. Shelf-life and sell-by dates are commonly applied to these products and are usually dictated by the appearance of the product rather than its nutritional value. During shelf-life, postharvest deterioration leads to a loss of nutritionally relevant compounds such as vitamin C. This is accelerated by suboptimal conditions during storage and transport such as breaches of the cold-chain. Volatile organic compounds (VOCs) are easy and quick to sample use of thermal desorption gas chromatography time of flight mass spectroscopy (TD-GC-TOF-MS) enables remote sampling and a very sensitive analysis of VOC profiles. We have used TD-GC-TOF-MS to sample VOCs from rocket salad bags sourced from a local supermarket to assess changes during the shelf-life of the product. Using statistical analyses that treat the whole VOC profile as a single variable we show that it is possible to differentiate between day of purchase, use by date and time points beyond sale. We conclude that this methodology is therefore of use for assessing rocket salad quality through the supply chain

    Molecular analysis of the E2F/DP gene family of Daucus carota and involvement of the DcE2F1 factor in cell proliferation

    Get PDF
    E2F transcription factors are key components of the RB/E2F pathway that, through the action of cyclin-dependent kinases, regulates cell cycle progression in both plants and animals. Moreover, plant and animal E2Fs have also been shown to regulate other cellular functions in addition to cell proliferation. Based on structural and functional features, they can be divided into different classes that have been shown to act as activators or repressors of E2F-dependent genes. Among the first plant E2F factors to be reported, we previously described DcE2F1, an activating E2F which is expressed in cycling carrot (Daucus carota) cells. In this study, we describe the identification of the additional members of the E2F/DP family of D. carota, which includes four typical E2Fs, three atypical E2F/DEL genes, and three related DP genes. Expression analyses of the carrot E2F and DP genes reveal distinctive patterns and suggest that the functions of some of them are not necessarily linked to cell proliferation. DcE2F1 was previously shown to transactivate an E2F-responsive promoter in transient assays but the functional role of this protein in planta was not defined. Sequence comparisons indicate that DcE2F1 could be an ortholog of the AtE2FA factor of Arabidopsis thaliana. Moreover, ectopic expression of the DcE2F1 cDNA in transgenic Arabidopsis plants is able to upregulate AtE2FB and promotes cell proliferation, giving rise to polycotyly with low frequency, effects that are highly similar to those observed when over-expressing AtE2FA. These results indicate that DcE2F1 is involved in the control of cell proliferation and plays important roles in the regulation of embryo and plant development

    Impact of salicylic acid, abscisic acid, and methyl jamonate on postharvest quality and bioactive compounds of cultivated strawberry fruit

    Get PDF
    BACKGROUND: Strawberry is one of the most highly consumed fruits worldwide. However, it is highly a perishable fruit postharvest. OBJECTIVE: To assess the effect of dipping strawberry fruits after harvest in plant growth regulators to maintain postharvest quality. METHODS: Treatments tested were: 2 and 4 mM salicylic acid (SA), 0.25 and 0.50 mM abscisic acid (ABA) and methyl jasmonate at 0.25 and 0.50 mM (MeJA). Bioactive compounds and fungal growth were assessed over 12 days of storage at 4°C. RESULTS: Both concentrations of SA and MeJA significantly suppressed weight loss, decay and respiration rate and 0.50 mM ABA also reduced decay. Both concentrations of SA retarded color development, and total soluble solids content was enhanced by 0.50 mM ABA and MeJA treatments. The most effective treatments for preserving firmness were 0.25 mM MeJA and 4 mM SA. Reduction in loss of ascorbic acid and bioactive compounds during storage was achieved using the highest concentrations of SA, ABA, and MeJA. Fungal growth was suppressed by all treatments but the best treatment was MeJA at both concentrations. CONCLUSIONS: All three plant growth regulators reduce postharvest changes in strawberry but effects differ amongst the treatments

    Biochemical and molecular changes in peach fruit exposed to cold stress conditions

    Get PDF
    Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer. Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products. Graphical Abstract

    Postharvest exogenous melatonin treatment of strawberry reduces postharvest spoilage but affects components of the aroma profile

    Get PDF
    BACKGROUND: Strawberries are perishable fruits that decay quickly after harvest, but are valued for their distinctive taste and aroma. Melatonin is involved in plant resistance against stress, plant senescence and fruit ripening, and was shown to delay post-harvest spoilage of strawberries. OBJECTIVE: The effects of melatonin postharvest treatment on shelf-life and volatile organic compound profile were assessed in strawberry fruits cv “Luca”. METHODS: Strawberry fruit were treated with 100 μM melatonin and stored at 4°C for 12 days to assess whether melatonin treatment could delay spoilage without adversely affecting aroma. RESULTS: Melatonin treatment delayed fruit deterioration by reducing weight loss and incidence of decay as well as maintaining total soluble solids, titratable acidity, anthocyanin, and taste. Melatonin treatment also significantly reduced CO2 production compared to control fruits. The relative abundance of the majority of volatile organic compounds (VOCs) was not affected, however abundance of two VOCs that are important components of strawberry aroma were affected by melatonin treatment. CONCLUSIONS: Post-harvest treatment of strawberries with 100 μM melatonin improved strawberry quality and conserved bioactive compounds after 12 d of storage. However, components of the aroma profile were altered in a way which may affect consumer perception of quality

    Priority effects during fungal community establishment in beech wood

    Get PDF
    Assembly history of fungal communities has a crucial role in the decomposition of woody resources, and hence nutrient cycling and ecosystem function. However, it has not been clearly determined whether the fungal species that arrive first may, potentially, dictate the subsequent pathway of community development, that is, whether there is a priority effect at the species level. We used traditional culture-based techniques coupled with sequencing of amplified genetic markers to profile the fungal communities in beech (Fagus sylvatica) disks that had been pre-colonised separately with nine species from various stages of fungal succession. Clear differences in community composition were evident following pre-colonisation by different species with three distinct successor communities identified, indicating that individual species may have pivotal effects in driving assembly history. Priority effects may be linked to biochemical alteration of the resource and combative ability of the predecessor

    Telecare motivational interviewing for diabetes patient education and support : a randomised controlled trial based in primary care comparing nurse and peer supporter delivery

    Get PDF
    Background: There is increasing interest in developing peer-led and 'expert patient'-type interventions, particularly to meet the support and informational needs of those with long term conditions, leading to improved clinical outcomes, and pressure relief on mainstream health services. There is also increasing interest in telephone support, due to its greater accessibility and potential availability than face to face provided support. The evidence base for peer telephone interventions is relatively weak, although such services are widely available as support lines provided by user groups and other charitable services. Methods/Design: In a 3-arm RCT, participants are allocated to either an intervention group with Telecare service provided by a Diabetes Specialist Nurse (DSN), an intervention group with service provided by a peer supporter (also living with diabetes), or a control group receiving routine care only. All supporters underwent a 2-day training in motivational interviewing, empowerment and active listening skills to provide telephone support over a period of up to 6 months to adults with poorly controlled type 2 diabetes who had been recommended a change in diabetes management (i.e. medication and/or lifestyle changes) by their general practitioner (GP). The primary outcome is self-efficacy; secondary outcomes include HbA1c, total and HDL cholesterol, blood pressure, body mass index, and adherence to treatment. 375 participants (125 in each arm) were sought from GP practices across West Midlands, to detect a difference in self-efficacy scores with an effect size of 0.35, 80% power, and 5% significance level. Adults living with type 2 diabetes, with an HbA1c > 8% and not taking insulin were initially eligible. A protocol change 10 months into the recruitment resulted in a change of eligibility by reducing HbA1c to > 7.4%. Several qualitative studies are being conducted alongside the main RCT to describe patient, telecare supporter and practice nurse experience of the trial. Discussion and implications of the research: With its focus on self-management and telephone peer support, the intervention being trialled has the potential to support improved self-efficacy and patient experience, improved clinical outcomes and a reduction in diabetes-related complications
    corecore