4 research outputs found

    Cardiac and Musculoskeletal Responses to the Effects of Passive and Active Tilt Test in Healthy Subjects

    No full text
    Abstract Background: Maintenance of orthostatism requires the interaction of autonomic and muscle responses for an efficient postural control, to minimize body motion and facilitate venous return in a common type of syncope called neurocardiogenic syncope (NCS). Muscle activity in standing position may be registered by surface electromyography, and body sway confirmed by displacement of the center of pressure (COP) on a force platform. These peripheral variables reflect the role of muscles in the maintenance of orthostatism during the active tilt test, which, compared with muscle activity during the passive test (head-up tilt test), enables the analyses of electromyographic activity of these muscles that may anticipate the clinical effects of CNS during these tests. Objective: to evaluate and compare the effects of a standardized protocol of active and passive tests for CNS diagnosis associated with the effects of Valsalva maneuver (VM). Methods: twenty-thee clinically stable female volunteers were recruited to undergo both tests. EMG electrodes were placed on muscles involved in postural maintenance. During the active test, subjects stood on a force platform. In addition to electromyography and the platform, heart rate was recorded during all tests. Three VMs were performed during the tests. Results: progressive peripheral changes were observed along both tests, more evidently during the active test. Conclusion: the active test detected changes in muscle and cardiovascular responses, which were exacerbated by the VM

    Correlation Between Trochlear Groove Depth and Patellar Position During Open and Closed Kinetic Chain Exercises in Subjects With Anterior Knee Pain

    No full text
    The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions.State of Sao Paulo Research Foundation-FAPESP [04/14097-7, 04/05086-1]State of Sao Paulo Research Foundation (FAPESP

    Evaluating Patellar Kinematics Through Magnetic Resonance Imaging During Open- and Closed-Kinetic-Chain Exercises

    No full text
    Purpose: To evaluate patellar kinematics of volunteers Without knee pain at rest and during isometric contraction in open- and closed-kinetic-chain exercises. Methods: Twenty individuals took part in this study. All were submitted to magnetic resonance imaging (MRI) during rest and voluntary isometric contraction (VIC) in the open anti closed kinetic chain at 15 degrees, 30 degrees, and 45 degrees of knee flexion. Through MRI and using medical e-film software, the following measurements were evaluated: sulcus angle, patellar-tilt angle, and bisect offset. The mixed-effects linear model was used for comparison between knee positions, between rest and isometric contractions, and between (he exercises. Results: Data analysis revealed that the sulcus angle decreased as knee flexion increased and revealed increases with isometric contractions in both the open and closed kinetic chain for all knee-flexion angles. The patellar-tilt angle decreased with isometric contractions in both the open and closed kinetic chain for every knee position. However, in the closed kinetic chain, patellar tilt increased significantly with the knee flexed at 15 degrees. The bisect offset increased with the knee flexed at 15 degrees during isometric contractions and decreased as knee flexion increased during both exercises. Conclusion: VIC in the last degrees of knee extension may compromise patellar dynamics. On the other hand, it is possible to favor patellar stability by performing muscle contractions with the knee flexed at 30 degrees and 45 degrees in either the open or closed kinetic chain
    corecore