42 research outputs found
Spectral identification of minerals using imaging spectrometry data: Evaluating the effects of signal to noise and spectral resolution using the tricorder algorithm
The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines
Public Health 2.0: How Web 2.0 Sites Are Used by Patients with Type 2 Diabetes
Objective: Given the dramatic increase of new interactive features on the Internet known as Web 2.0 sites, the objective of this study was to determine how features such as member profiles, personal blogs and online social networks were used in virtual communities related to type 2 diabetes and to describe the potential differences between the social ecology model of these virtual communities and traditional physical communities.Methods: All original posts and replies in two diabetes discussion forums in web 2.0 enabled virtual communities were recorded for ninety days. Utilization of these features and content from publicly available components of profile pages were recorded from a purposive sample of 60 members. Content was analyzed using qualitative coding techniques. Utilization of other Web 2.0 features was recorded to determine frequency of use among sampled members.Results: 272 original posts and 3605 replies were generated by the participants in the discussion threads. Discussion forum analysis revealed that food, medication and blood glucose levels were major themes for original posts. Replies usually included the empathic and personal experiences of other members. Group guidance emerged from the cumulative responses provided by the community and provided the individual with a sense of the normalized behaviors of the community. Analysis of the utilization of various Web 2.0 features revealed that those who withheld gender information used the features less often than those identifying with a gender. Utilization also appeared to be dependent on the design attributes of the website. Analysis of 204 personal blog entries revealed the daily struggles of the members and rarely discussed diabetes. Replies to personal blogs were more likely to include religious guidance and expressions of empathy and love. Strong social ties were evident between individual blog entries and those providing the replies.Discussion and Public Health Significance: Discussion forums provided members with the ability to gather disease specific information from a large network of individuals with salient experiences. Personal blogs and other features facilitated the formation of strong social ties to develop. The combination of these features online provides a unique opportunity for public health practitioners to develop comprehensive and multifaceted interventions
Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm
The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job
Comparison of three methods for materials identification and mapping with imaging spectroscopy
We are comparing three methods of mapping analysis tools for imaging spectroscopy data. The purpose of this comparison is to understand the advantages and disadvantages of each algorithm so others would be better able to choose the best algorithm or combinations of algorithms for a particular problem. The three algorithms are: (1) the spectralfeature modified least squares mapping algorithm of Clark et al (1990, 1991): programs mbandmap and tricorder; (2) the Spectral Angle Mapper Algorithm(Boardman, 1993) found in the CU CSES SIPS package; and (3) the Expert System of Kruse et al. (1993). The comparison uses a ground-calibrated 1990 AVIRIS scene of 400 by 410 pixels over Cuprite, Nevada. Along with the test data set is a spectral library of 38 minerals. Each algorithm is tested with the same AVIRIS data set and spectral library. Field work has confirmed the presence of many of these minerals in the AVIRIS scene (Swayze et al. 1992)
Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption
Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species
Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada
Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image
Initial vegetation species and senescience/stress indicator mapping in the San Luis Valley, Colorado using imaging spectrometer data
We analyzed AVIRIS data obtained over agricultural areas in the San Luis Valley of Colorado. The data were acquired on September 3, 1993. A combined method of radiative transfer modeling and ground calibration site reflectance was used to correct the flight data to surface reflectance. This method, called Radiative Transfer Ground Calibration, or RTGC, corrects for variable water vapor in the atmosphere and produces spectra free of artifacts with spectral channel to channel noise approaching the signal to noise of the raw data. The calibration site soil samples were obtained on the day of the overflight and measured on our laboratory spectrometer. The site was near the center of the AVIRIS scene and the spectra of the soil is spectrally bland, especially in the region of the chlorophyll absorption in the visible portion of the spectrum. The center of the scene is located at approximately 106 deg 03' longitude, 37 deg 23' latitude, and the scene covers about 92 square kilometers. This scene is one of 28 in the area for a general project to study the Summitville abandoned mine site, located in the mountains west of the San Luis Valley, and its effects on the surrounding environment
Comparison of methods for calibrating AVIRIS data to ground reflectance
We are comparing three basic methods of calibrating AVIRIS data to ground reflectance: (1) atmospheric radiative transfer models with the solar flux can be used to calibrate AVIRIS radiance data (Specific methods include the University of Colorado CSES ARP and ATREM algorithms); (2) Robert Green's modified MODTRAN and AVIRIS radiance model (This method is similar to 1 but differs in that the solar radiance is bypassed, so any errors in the solar flux are canceled, too); and (3) ground calibration using known sites in the AVIRIS scene. We are using 1992AVIRIS data over Cuprite, Nevada, and Blackhawk Island, Wisconsin, as our test scenes. Both these sites have extensive field measurements. The Cuprite site had a very clear atmosphere, thus path radiance was dominated by Rayleigh scattering with little or no flux beyond 1 micron. The Blackhawk site has more aerosols, with significant path radiance flux beyond 2 micron
Calibration and evaluation of AVIRIS data: Cripple Creek in October 1987
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were obtained over Cripple Creek and Canon City Colorado on October 19, 1987 at local noon. Multiple ground calibration sites were measured within both areas with a field spectrometer and samples were returned to the laboratory for more detailed spectral characterization. The data were used to calibrate the AVIRIS data to ground reflectance. Once calibrated, selected spectra in the image were extracted and examined, and the signal to noise performance was computed. Images of band depth selected to be diagnostic of the presence of certain minerals and vegetation were computed. The AVIRIS data were extremely noisy, but images showing the presence of goethite, kaolinite and lodgepole pine trees agree with ground checks of the area
Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration
The Noachian terrain west of the Isidis basin hosts a diverse collection of alteration minerals in rocks comprising varied geomorphic units within a 100,000 km2 region in and near the Nili Fossae. Prior investigations in this region by the Observatoire pour l'Min茅ralogie, l'Eau, les Glaces, et l'Activit茅 (OMEGA) instrument on Mars Express revealed large exposures of both mafic minerals and iron magnesium phyllosilicates in stratigraphic context. Expanding on the discoveries of OMEGA, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has found more spatially widespread and mineralogically diverse alteration minerals than previously realized, which represent multiple aqueous environments. Using CRISM near-infrared spectral data, we detail the basis for identification of iron and magnesium smectites (including both nontronite and more Mg-rich varieties), chlorite, prehnite, serpentine, kaolinite, potassium mica (illite or muscovite), hydrated (opaline) silica, the sodium zeolite analcime, and magnesium carbonate. The detection of serpentine and analcime on Mars is reported here for the first time. We detail the geomorphic context of these minerals using data from high-resolution imagers onboard MRO in conjunction with CRISM. We find that the distribution of alteration minerals is not homogeneous; rather, they occur in provinces with distinctive assemblages of alteration minerals. Key findings are (1) a distinctive stratigraphy, in and around the Nili Fossae, of kaolinite and magnesium carbonate in bedrock units always overlying Fe/Mg smectites and (2) evidence for mineral phases and assemblages indicative of low-grade metamorphic or hydrothermal aqueous alteration in cratered terrains. The alteration minerals around the Nili Fossae are more typical of those resulting from neutral to alkaline conditions rather than acidic conditions, which appear to have dominated much of Mars. Moreover, the mineralogic diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments