2,987 research outputs found

    Pressure and kinetic energy transport across the cavity mouth in resonating cavities

    Get PDF
    Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1 × 10−3 and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady—a sort of coarse turbulent flow—a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1 × 102 to 1 × 103, larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re ∼ 2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1 × 10−1 Pa.We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which could be observed in simulations where the full compressible formulation is used. The flow is studied by means of a sequence of direct numerical simulations in the Reynolds number range 25-2900. This allows the study to span across the steady laminar regime up to a first coarse turbulent regime. These results are confirmed by the good agreement with a set of laboratory results obtained at a Reynolds number one order of magnitude larger in a different cavity geometry [M. Gharib and A. Roshko, J. Fluid Mech. 177, 501 (1987)]. This leaves room for a certain degree of qualitative universality to be associated with the present findings. DOI: 10.1103/PhysRevE.87.01301

    Ectopic expression of Thy-1 in the kidneys of transgenic mice induces functional and proliferative abnormalities.

    Get PDF
    Hybrid human--mouse Thy-1.1 genes were injected into pronuclei of Thy-1.2 mice to produce transgenic animals. A hybrid gene composed of the 5' part of the mouse Thy-1.1 gene combined with the 3' human untranslated regions was expressed abnormally in the kidney podocytes, which resulted in severe protein-uria and subsequent death in several founder mice. A hybrid Thy-1 gene composed of the human coding region with the 5' and 3' flanking regions of the mouse gene was expressed abnormally in a different part of the kidney (the tubular epithelia), which resulted in a proliferative kidney disorder. In addition, a neoplasm was found in the brain of one of these mice. These results show that the Thy-1 protein can play an important role in the activation, proliferation, and differentiation of many different cell types

    Utility of the new Movement Disorder Society clinical diagnostic criteria for Parkinson's disease applied retrospectively in a large cohort study of recent onset cases

    Get PDF
    Objective: To examine the utility of the new Movement Disorder Society (MDS) diagnostic criteria in a large cohort of Parkinson's disease (PD) patients. Methods: Recently diagnosed (<3.5 years) PD cases fulfilling United Kingdom (UK) brain bank criteria in Tracking Parkinson's, a UK multicenter prospective natural history study were assessed by retrospective application of the MDS criteria. Results: In 2000 cases, 1835 (91.7%) met MDS criteria for PD, either clinically established (n = 1261, 63.1%) or clinically probable (n = 574, 28.7%), leaving 165 (8.3%) not fulfilling criteria. Clinically established cases were significantly more likely to have limb rest tremor (89.3%), a good l-dopa response (79.5%), and olfactory loss (71.1%), than clinically probable cases (60.6%, 44.4%, and 34.5% respectively), but differences between probable PD and ‘not PD’ cases were less evident. In cases not fulfilling criteria, the mean MDS UPDRS3 score (25.1, SD 13.2) was significantly higher than in probable PD (22.3, SD 12.7, p = 0.016) but not established PD (22.9, SD 12.0, p = 0.066). The l-dopa equivalent daily dose of 341 mg (SD 261) in non-PD cases was significantly higher than in probable PD (250 mg, SD 214, p < 0.001) and established PD (308 mg, SD 199, p = 0.025). After 30 months' follow-up, 89.5% of clinically established cases at baseline remained as PD (established/probable), and 86.9% of those categorized as clinically probable at baseline remained as PD (established/probable). Cases not fulfilling PD criteria had more severe parkinsonism, in particular relating to postural instability, gait problems, and cognitive impairment. Conclusion: Over 90% of cases clinically diagnosed as early PD fulfilled the MDS criteria for PD. Those not fulfilling criteria may have an atypical parkinsonian disorder or secondary parkinsonism that is not correctly identified by the UK Brain Bank criteria, but possibly by the new criteria

    Intrathecal Urokinase as a treatment for intraventricular hemorrhage in the preterm infant

    Get PDF
    Despite improvements in the care of preterm infants, intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus (PHH) continue to be frequent occurrences in this patient population. Shunt procedures in these children are frequently complicated by obstruction and/or infection. As the hydrocephalus is usually caused by an obliterative arachnoiditis due to contact of the blood with the basilar meninges, it was postulated that infusion of urokinase into the ventricles of infants who have sustained an IVH would clear the blood, mitigate the arachnoiditis, and prevent the progression of PHH. Accordingly, 18 preterm infants who had sustained IVH and subsequently developed PHH were treated with intraventricular urokinase instilled via a surgically implanted subcutaneous reservoir. There were no complications associated with the urokinase. Infants were divided into two dosage groups: low dose (110,000–140,000 IU total) and high dose (280,000 IU total). One infant in the low-dose group died at 1 month of life of respiratory complications. In the low-dose group, 3 of 8 (37%) infants required shunt placement; in the high-dose group, all 9 required shunt placement. For the total group, the shunt rate was 71 %. This compares to a historical control group shunt rate of 92%. While the difference between the treatment group as a whole and control group approaches, but does not reach, statistical significance (p = 0.068), there was a significant reduction in the shunt rate when the low-dose group was considered separately (p \u3c 0.002). For those infants that required shunt placement, there were fewer shunt revisions performed in the treatment group than in the control group during the first 24 months following shunt placement: 0.67 versus 1.5 shunt revisions/shunted child. Initial experience with intraventricular urokinase following IVH and PHH in preterm infants suggests a beneficial effect in reducing the shunt revision rate in both high- and low-dose groups. Reduction in shunt placement rate is seen only in the low-dose group

    Fifty years of spellchecking

    Get PDF
    A short history of spellchecking from the late 1950s to the present day, describing its development through dictionary lookup, affix stripping, correction, confusion sets, and edit distance to the use of gigantic databases

    Antibodies against Lysophosphatidic Acid Protect against Blast-Induced Ocular Injuries

    Get PDF
    Exposure to blast overpressure waves is implicated as the major cause of ocular injuries and resultant visual dysfunction in veterans involved in recent combat operations. No effective therapeutic strategies have been developed so far for blast-induced ocular dysfunction. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells, and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid have been reported to increase acutely in patients with traumatic brain injury (TBI) as well as in a controlled cortical impact (CCI) TBI model in mice. In the present study, we have evaluated the efficacy of a single intravenous administration of a monoclonal LPA antibody (25 mg/kg) given at 1 h post-blast for protection against injuries to the retina and associated ocular dysfunctions. Our results show that a single 19 psi blast exposure significantly increased the levels of several species of LPA in blood plasma at 1 and 4 h post-blast. The anti-LPA antibody treatment significantly decreased glial cell activation and preserved neuronal cell morphology in the retina on day 8 after blast exposure. Optokinetic measurements indicated that anti-LPA antibody treatment significantly improved visual acuity in both eyes on days 2 and 6 post-blast exposure. Anti-LPA antibody treatment significantly increased rod photoreceptor and bipolar neuronal cell signaling in both eyes on day 7 post-blast exposure. These results suggest that blast exposure triggers release of LPAs, which play a major role promoting blast-induced ocular injuries, and that a single early administration of anti-LPA antibodies provides significant protection

    JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory

    Get PDF
    The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JIP1 scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDA receptor currents, increased NMDA receptor-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDA receptor-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT: The results of this study demonstrate that JNK activation induced by the JIP1 scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study reports the identification of JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDA receptor-dependent synaptic plasticity and memory

    Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans

    Get PDF
    Background Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilises glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by current standard BAT assessment methods as positron emission tomography-computed tomography (PET-CT) requires exposure to high doses of ionising radiation. Infrared thermography (IRT) is a potential non-invasive, safe alternative, although direct corroboration with PET-CT has not previously been established. Methods IRT and 18F-fluorodeoxyglucose (¹⁸F-FDG) PET-CT data from 8 healthy male participants subjected to water jacket cooling were directly compared. Thermal images (TIs) were geometrically transformed to overlay PET-CT-derived maximum intensity projection (MIP) images from each subject and the areas of greatest intensity of temperature and glucose-uptake within the supraclavicular regions compared. Relationships between supraclavicular temperatures from IRT (TSCR) and the maximum rate of glucose uptake (MR(gluc)) from PET-CT were determined. Results Glucose uptake on MR(gluc)MIP was positively correlated with change in TSCR relative to a reference region (r² = 0.721; p=0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5±5.1%. Prolonged cooling to 60 minutes was associated with further TSCR rise compared with cooling to 10 minutes. Conclusions The supraclavicular hotspot identified on IRT closely corresponds to the area of maximal uptake on PET-CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations where PET-CT is not feasible, practical or repeatable
    corecore