45 research outputs found

    Geometric tuning of charge and spin correlations in manganite superlattices

    Full text link
    We report a modulation of the in-plane magnetotransport in artificial manganite superlattice (SL) [(NdMnO3)n /(SrMnO3)n /(LaMnO3)n]m by varying the layer thickness n while keeping the total thickness of the structure constant. Charge transport in these heterostructures is confined to the interfaces and occurs via variable range hopping (VRH). Upon increasing n, the interfacial separation rises, leading to a suppression of the electrostatic screening between carriers of neighboring interfaces and the opening of a Coulomb gap at the Fermi level (EF). The high-field magnetoresistance (MR) is universally negative due to progressive spin alignment. However at a critical thickness of n=5 unit cells (u.c.), an exchange field coupling between ferromagnetically ordered interfaces results in positive MR at low magnetic field (H). Our results demonstrate the ability to geometrically tune the electrical transport between regimes dominated by either charge or spin correlations.Comment: 19 pages, 5 Figures, accepted for publication in AP

    Growth, strain, and spin-orbit torques in epitaxial Ni-Mn-Sb films sputtered on GaAs

    Get PDF
    We report current-induced spin torques in epitaxial NiMnSb films on a commercially available epiready GaAs substrate. The NiMnSb was grown by cosputtering from three targets using optimized parameters. The films were processed into microscale bars to perform current-induced spin-torque measurements. Magnetic dynamics were excited by microwave currents, and electric voltages along the bars were measured to analyze the symmetry of the current-induced torques. We found that the extracted symmetry of the spin torques matches those expected from spin-orbit interaction in a tetragonally distorted half-Heusler crystal. Both fieldlike and dampinglike torques are observed in all the samples characterized, and the efficiency of the current-induced torques is comparable to that of ferromagnetic metal/heavy-metal bilayers

    Spin transport parameters of NbN thin films characterized by spin pumping experiments

    Get PDF
    We present measurements of ferromagnetic resonance driven spin pumping and inverse spin Hall effect in NbN/Y3Fe5O12 (YIG) bilayers. A clear enhancement of the (effective) Gilbert damping constant of the thin-film YIG was observed due to the presence of the NbN spin sink. By varying the NbN thickness and employing spin-diffusion theory, we have estimated the room-temperature values of the spin-diffusion length and the spin Hall angle in NbN to be 14 nm and −1.1×10−2, respectively. Furthermore, we have determined the spin mixing conductance of the NbN/YIG interface to be 10nm−2. The experimental quantification of these spin transport parameters is an important step towards the development of superconducting spintronic devices involving NbN thin films

    Genome-wide mapping of Quantitative Trait Loci for fatness, fat cell characteristics and fat metabolism in three porcine F2 crosses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>QTL affecting fat deposition related performance traits have been considered in several studies and mapped on numerous porcine chromosomes. However, activity of specific enzymes, protein content and cell structure in fat tissue probably depend on a smaller number of genes than traits related to fat content in carcass. Thus, in this work traits related to metabolic and cytological features of back fat tissue and fat related performance traits were investigated in a genome-wide QTL analysis. QTL similarities and differences were examined between three F<sub>2 </sub>crosses, and between male and female animals.</p> <p>Methods</p> <p>A total of 966 F<sub>2 </sub>animals originating from crosses between Meishan (M), Pietrain (P) and European wild boar (W) were analysed for traits related to fat performance (11), enzymatic activity (9) and number and volume of fat cells (20). Per cross, 216 (M × P), 169 (W × P) and 195 (W × M) genome-wide distributed marker loci were genotyped. QTL mapping was performed separately for each cross in steps of 1 cM and steps were reduced when the distance between loci was shorter. The additive and dominant components of QTL positions were detected stepwise by using a multiple position model.</p> <p>Results</p> <p>A total of 147 genome-wide significant QTL (76 at P < 0.05 and 71 at P < 0.01) were detected for the three crosses. Most of the QTL were identified on SSC1 (between 76-78 and 87-90 cM), SSC7 (predominantly in the MHC region) and SSCX (in the vicinity of the gene <it>CAPN6</it>). Additional genome-wide significant QTL were found on SSC8, 12, 13, 14, 16, and 18. In many cases, the QTL are mainly additive and differ between F<sub>2 </sub>crosses. Many of the QTL profiles possess multiple peaks especially in regions with a high marker density. Sex specific analyses, performed for example on SSC6, SSC7 and SSCX, show that for some traits the positions differ between male and female animals. For the selected traits, the additive and dominant components that were analysed for QTL positions on different chromosomes, explain in combination up to 23% of the total trait variance.</p> <p>Conclusions</p> <p>Our results reveal specific and partly new QTL positions across genetically diverse pig crosses. For some of the traits associated with specific enzymes, protein content and cell structure in fat tissue, it is the first time that they are included in a QTL analysis. They provide large-scale information to analyse causative genes and useful data for the pig industry.</p

    Epigenetics and inheritance of phenotype variation in livestock

    Full text link
    corecore