397 research outputs found
Dynamics of combined electron beam and laser dispersion of polymers in vacuum
The mechanisms of the impact of the laser assisting effect on the dispersion kinetics and on the structure of the deposited layers in electron beam dispersion of a polymer target were analyzed. The proposed model and analytical expressions adequately describe the kinetic dependence of the polymer materials dispersion rate in a vacuum on the intensity of laser processing of their dispersion zone
Structure of 10N in 9C+p resonance scattering
The structure of exotic nucleus 10N was studied using 9C+p resonance
scattering. Two L=0 resonances were found to be the lowest states in 10N. The
ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2)
MeV depending on the 2- or 1- spin-parity assignment, and the first excited
state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.
The influence of multilayer metal-carbon coatings composition with different arrangement of functional layers on their surface morphology
This research was supported by the grants of Belarussian Republican Foundation for Fundamental Research BRFFR № T17KIG-009
Structure of 8B from elastic and inelastic 7Be+p scattering
Motivation: Detailed experimental knowledge of the level structure of light
weakly bound nuclei is necessary to guide the development of new theoretical
approaches that combine nuclear structure with reaction dynamics.
Purpose: The resonant structure of 8B is studied in this work.
Method: Excitation functions for elastic and inelastic 7Be+p scattering were
measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6
and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions
was performed.
Results: New low-lying resonances at 1.9, 2.5, and 3.3 MeV in 8B are reported
with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the
Time Dependent Continuum Shell (TDCSM) model and ab initio no-core shell
model/resonating-group method (NCSM/RGM) calculations is performed. This work
is a more detailed analysis of the data first published as a Rapid
Communication. [J.P. Mitchell, et al, Phys. Rev. C 82, 011601(R) (2010)]
Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by
some models at relatively low energy but never observed experimentally is an
important step toward understanding the structure of 8B. Their identification
was aided by having both elastic and inelastic scattering data. Direct
comparison of the cross sections and phase shifts predicted by the TDCSM and ab
initio No Core Shell Model coupled with the resonating group method is of
particular interest and provides a good test for these theoretical approaches.Comment: 15 pages, 19 figures, 3 tables, submitted to PR
Low-lying states in 8B
Excitation functions of elastic and inelastic 7Be+p scattering were measured
in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of
the excitation functions provides strong evidence for new positive parity
states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed
and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time
Dependent Continuum Shell Model were used in the analysis of the excitation
functions. The new results are compared to the calculations of contemporary
theoretical models.Comment: 6 pages, 5 figures, accepted as Rapid Communication in Phys. Rev.
Evaluation of the Efficiency of Detection and Capture of Manganese in Aqueous Solutions of FeCeOx Nanocomposites Doped with Nb2O5
: The main purpose of this work is to study the effectiveness of using FeCeOx nanocomposites doped with Nb2O5 for the purification of aqueous solutions from manganese. X-ray diffraction, energy-dispersive analysis, scanning electron microscopy, vibrational magnetic spectroscopy, and mössbauer spectroscopy were used as research methods. It is shown that an increase in the dopant concentration leads to the transformation of the shape of nanoparticles from spherical to cubic and rhombic, followed by an increase in the size of the nanoparticles. The spherical shape of the nanoparticles is characteristic of a structure consisting of a mixture of two phases of hematite (Fe2O3) and cerium oxide CeO2. The cubic shape of nanoparticles is typical for spinel-type FeNbO4 structures, the phase contribution of which increases with increasing dopant concentration. It is shown that doping leads not only to a decrease in the concentration of manganese in model solutions, but also to an increase in the efficiency of adsorption from 11% to 75%
Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air
A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals
- …