118 research outputs found

    Comprehensive analysis of mitochondrial and nuclear DNA variations in patients affected by hemoglobinopathies: a pilot study

    Get PDF
    The hemoglobin disorders are the most common single gene disorders in the world. Previous studies have suggested that they are deeply geographically structured and a variety of genetic determinants influences different clinical phenotypes between patients inheriting identical β-globin gene mutations. In order to get new insights into the heterogeneity of hemoglobin disorders, we investigated the molecular variations on nuclear genes (i.e. HBB, HBG2, BCL11A, HBS1L and MYB) and mitochondrial DNA control region. This pilot study was carried out on 53 patients belonging to different continents and molecularly classified in 4 subgroup: β-thalassemia (β+/β+, β0/β0 and β+/β0)(15), sickle cell disease (HbS/HbS)(20), sickle cell/β-thalassemia (HbS/β+ or HBS/β0)(10), and non-thalassemic compound heterozygous (HbS/HbC, HbO-Arab/HbC)(8). This comprehensive phylogenetic analysis provided a clear separation between African and European patients either in nuclear or mitochondrial variations. Notably, informing on the phylogeographic structure of affected individuals, this accurate genetic stratification, could help to optimize the diagnostic algorithm for patients with uncertain or unknown origin

    A Novel Immunological Assay for Hepcidin Quantification in Human Serum

    Get PDF
    Contains fulltext : 81054.pdf (publisher's version ) (Open Access)BACKGROUND: Hepcidin is a 25-aminoacid cysteine-rich iron regulating peptide. Increased hepcidin concentrations lead to iron sequestration in macrophages, contributing to the pathogenesis of anaemia of chronic disease whereas decreased hepcidin is observed in iron deficiency and primary iron overload diseases such as hereditary hemochromatosis. Hepcidin quantification in human blood or urine may provide further insights for the pathogenesis of disorders of iron homeostasis and might prove a valuable tool for clinicians for the differential diagnosis of anaemia. This study describes a specific and non-operator demanding immunoassay for hepcidin quantification in human sera. METHODS AND FINDINGS: An ELISA assay was developed for measuring hepcidin serum concentration using a recombinant hepcidin25-His peptide and a polyclonal antibody against this peptide, which was able to identify native hepcidin. The ELISA assay had a detection range of 10-1500 microg/L and a detection limit of 5.4 microg/L. The intra- and interassay coefficients of variance ranged from 8-15% and 5-16%, respectively. Mean linearity and recovery were 101% and 107%, respectively. Mean hepcidin levels were significantly lower in 7 patients with juvenile hemochromatosis (12.8 microg/L) and 10 patients with iron deficiency anemia (15.7 microg/L) and higher in 7 patients with Hodgkin lymphoma (116.7 microg/L) compared to 32 age-matched healthy controls (42.7 microg/L). CONCLUSIONS: We describe a new simple ELISA assay for measuring hepcidin in human serum with sufficient accuracy and reproducibility

    Allele frequencies of hemojuvelin gene (HJV) I222N and G320V missense mutations in white and African American subjects from the general Alabama population

    Get PDF
    BACKGROUND: Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV) in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis), and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples. METHODS: We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans. RESULTS: One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects. CONCLUSIONS: HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption

    Hereditary Hemochromatosis (HFE) genotypes in heart failure: Relation to etiology and prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is believed that hereditary hemochromatosis (HH) might play a role in cardiac disease (heart failure (HF) and ischemia). Mutations within several genes are HH-associated, the most common being the <it>HFE </it>gene. In a large cohort of HF patients, we sought to determine the etiological role and the prognostic significance of <it>HFE </it>genotypes.</p> <p>Methods</p> <p>We studied 667 HF patients (72.7% men) with depressed systolic function, enrolled in a multicentre trial with a follow-up period of up to 5 years. All were genotyped for the known <it>HFE </it>variants C282Y, H63D and S65C.</p> <p>Results</p> <p>The genotype and allele frequencies in the HF group were similar to the frequencies determined in the general Danish population. In multivariable analysis mortality was not predicted by C282Y-carrier status (HR 1.2, 95% CI: 0.8-1.7); H63D-carrier status (HR 1.0, 95% CI: 0.7-1.3); nor S65C-carrier status (HR 1.2, 95% CI: 0.7-2.0). We identified 27 (4.1%) homozygous or compound heterozygous carriers of <it>HFE </it>variants. None of these carriers had a clinical presentation suggesting hemochromatosis, but hemoglobin and ferritin levels were higher than in the rest of the cohort. Furthermore, a trend towards reduced mortality was seen in this group in univariate analyses (HR 0.4, 95% CI: 0.2-0.9, p = 0.03), but not in multivariate (HR 0.5, 95% CI: 0.2-1.2).</p> <p>Conclusion</p> <p><it>HFE </it>genotypes do not seem to be a significant contributor to the etiology of heart failure in Denmark. <it>HFE </it>variants do not affect mortality in HF.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore