570 research outputs found

    Growth control of GaAs nanowires using pulsed laser deposition with arsenic over pressure

    Full text link
    Using pulsed laser ablation with arsenic over pressure, the growth conditions for GaAs nanowires have been systematically investigated and optimized. Arsenic over pressure with As2_2 molecules was introduced to the system by thermal decomposition of polycrystalline GaAs to control the stoichiometry and shape of the nanowires during growth. GaAs nanowires exhibit a variety of geometries under varying arsenic over pressure, which can be understood by different growth processes via vapor-liquid-solid mechanism. Single-crystal GaAs nanowires with uniform diameter, lengths over 20 μ\mum, and thin surface oxide layer were obtained and can potentially be used for further electronic characterization

    Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid

    Get PDF
    A molecular approach was used to evaluate the microbial diversity of bacteria and archaea in two expanded granular sludge bed (EGSB) reactors fed with increasing oleic acid loading rates up to 8 kg of chemical oxygen demand (COD) mˉ³ dayˉ¹ as the sole carbon source. One of the reactors was inoculated with granular sludge (RI) and the other with suspended sludge (RII). During operation, the sludge in both reactors was segregated in two layers: a bottom settled one and a top floating one. The composition of the bacterial community, based on 16S rDNA sequence diversity, was affected most during the oleate loading process in the two reactors. The archaeal consortium remained rather stable over operation in RI, whereas in RII the relative abundance of Methanosaeta-like organisms became gradually weaker, starting in the bottom layer. In the range of oleate loads evaluated, 6 kg of COD mˉ³ dayˉ¹ was found as the maximum value that could be applied to the system. A further increase to 8 kg of oleate-COD mˉ³ dayˉ¹ induced a maximal shift on the microbial structure of the sludges. At this time point, methanogenic acetoclastic activity was not detected and only very low methanogenic activity on H2/CO2 was exhibited by the sludges.Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XXI/BD/20326/99.Fundação Calouste Gulbenkian (FCG)

    Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)

    Full text link
    The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform for on-chip optical interconnects and quantum optical applications. Monolithic integration of both material systems is a long-time challenge, since different material properties lead to high defect densities in the epitaxial layers. In recent years, nanostructures however have shown to be suitable for successfully realising light emitters on silicon, taking advantage of their geometry. Facet edges and sidewalls can minimise or eliminate the formation of dislocations, and due to the reduced contact area, nanostructures are little affected by dislocation networks. Here we demonstrate the potential of indium phosphide quantum dots as efficient light emitters on CMOS-compatible silicon substrates, with luminescence characteristics comparable to mature devices realised on III-V substrates. For the first time, electrically driven single-photon emission on silicon is presented, meeting the wavelength range of silicon avalanche photo diodes' highest detection efficiency

    Dilaton Domain Walls and Dynamical Systems

    Full text link
    Domain wall solutions of dd-dimensional gravity coupled to a dilaton field σ\sigma with an exponential potential Λeλσ\Lambda e^{-\lambda\sigma} are shown to be governed by an autonomous dynamical system, with a transcritical bifurcation as a function of the parameter λ\lambda when Λ<0\Lambda<0. All phase-plane trajectories are found exactly for λ=0\lambda=0, including separatrices corresponding to walls that interpolate between adSdadS_d and adS_{d-1} \times\bR, and the exact solution is found for d=3d=3. Janus-type solutions are interpreted as marginal bound states of these ``separatrix walls''. All flat domain wall solutions, which are given exactly for any λ\lambda, are shown to be supersymmetric for some superpotential WW, determined by the solution.Comment: 30 pp, 11 figs, significant revision of original. Minor additional corrections in version to appear in journa

    Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from an EGSB reactor fed with oleic acid

    Get PDF
    Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on the accumulation of adsorbed long chain fatty acid and with the molecular characterization of microbial community gave insight into the mechanisms of sludge disintegration, flotation and washout. It was found that the bacterial domain was more affected than the archaeal domain during this process. However, no acetoclastic activity and only a residual hydrogenotrophic activity were detected in the sludge at the end of the operation.(undefined

    Vanishing Preons in the Fifth Dimension

    Get PDF
    We examine supersymmetric solutions of N=2, D=5 gauged supergravity coupled to an arbitrary number of abelian vector multiplets using the spinorial geometry method. By making use of methods developed in hep-th/0606049 to analyse preons in type IIB supergravity, we show that there are no solutions preserving exactly 3/4 of the supersymmetry.Comment: 19 pages, latex. Reference added, and further modification to the introductio

    Tunable Supercurrent Through Semiconductor Nanowires

    Full text link
    Nanoscale superconductor-semiconductor hybrid devices are assembled from InAs semiconductor nanowires individually contacted by aluminum-based superconductor electrodes. Below 1 K, the high transparency of the contacts gives rise to proximity-induced superconductivity. The nanowires form superconducting weak links operating as mesoscopic Josephson junctions with electrically tunable coupling. The supercurrent can be switched on/off by a gate voltage acting on the electron density in the nanowire. A variation in gate voltage induces universal fluctuations in the normal-state conductance which are clearly correlated to critical current fluctuations. The ac Josephson effect gives rise to Shapiro steps in the voltage-current characteristic under microwave irradiation.Comment: 9 pages, 3 figure
    corecore