7 research outputs found

    Oregon 2100: Projected Climatic and Ecological Changes

    Get PDF
    28 pagesGreenhouse climatic warming is underway and exacerbated by human activities. Future outcomes of these processes can be projected using computer models checked against climatic changes during comparable past atmospheric compositions. This study gives concise quantitative predictions for future climate, landscapes, soils, vegetation, and marine and terrestrial animals of Oregon. Fossil fuel burning and other human activities by the year 2100 are projected to yield atmospheric CO2 levels of about 600-850 ppm (SRES A1B and B1), well above current levels of 400 ppm and preindustrial levels of 280 ppm. Such a greenhouse climate was last recorded in Oregon during the middle Miocene, some 16 million years ago. Oregon’s future may be guided by fossil records of the middle Miocene, as well as ongoing studies on the environmental tolerances of Oregon plants and animals, and experiments on the biological effects of global warming. As carbon dioxide levels increase, Oregon’s climate will move toward warm temperate, humid in the west and semiarid to subhumid to the east, with increased summer and winter drought in the west. Western Oregon lowlands will become less suitable for temperate fruits and nuts and Pinot Noir grapes, but its hills will remain a productive softwood forest resource. Improved pasture and winter wheat crops will become more widespread in eastern Oregon. Tsunamis and stronger storms will exacerbate marine erosion along the Oregon Coast, with significant damage to coastal properties and cultural resource

    Changing Hillslopes: Evolution and Inheritance; Inheritance and Evolution of Slopes

    No full text
    The antiquity and inheritance of hillslopes have long fascinated geologists seeking to unravel the impact of climate on hillslope morphology. Given the onset of profound climate oscillations in the last several million years, Neogene landscapes may have differed significantly from the modern Earth surface. Early views on climate–morphology linkages have also differed greatly; some ascribed nearly every feature of modern slopes to past climate regimes, whereas others noted the ubiquity of slope forms worldwide and thus rejected a primary role for climate. Efforts to differentiate between these divergent views were hampered by a lack of model testing. The revival of topographic surveys in the 1950s encouraged quantitative analysis of slope forms and explicit treatment of hillslope processes. More recently, the coupling of process-based models for sediment transport, erosion rate estimates via cosmogenic radionuclides, and widespread topographic data has enabled the testing and calibration of process-based models for hillslope interpretation and prediction. In soil-mantled terrain, models for soil transport and production predict that hillslope adjustment timescales vary nonlinearly with hillslope length; the adjustment timescale for typical settings should vary from 10,000 to 500,000 years, similar to the timescale for glacial–interglacial and other climate fluctuations. Because process-based models for bedrock landscapes are poorly understood, we have limited ability to quantify, for example, post-glacial rockfall and scree slope formation. Although the paradigm of steady-state hillslopes has facilitated the testing of numerous process models in the last several decades, this assumption should be relaxed such that climate–hillslope linkages can be more clearly defined

    Oregon 2100: projected and climatic and ecological changes

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/148586/1/Retallack_et_al_2016_BUOMNH-Oregon_2100.pd
    corecore