103 research outputs found

    1,25-dihydroxyvitamin D3 induces stable and reproducible therapeutic tolerogenic dendritic cells with specific epigenetic modifications

    Get PDF
    Autologous, antigen-specific, tolerogenic dendritic cells (tolDCs) are presently assessed to reverse and possibly cure autoimmune diseases such as type 1 diabetes (T1D). Good Manufacturing Practice production and clinical implementation of such cell therapies critically depend on their stability and reproducible production from healthy donors and, more importantly, patient-derived monocytes. Here the authors demonstrate that tolDCs (modulated using 1,25-dihydroxyvitamin D3 and dexamethasone) displayed similar features, including protein, transcriptome and epigenome profiles, between two international clinical centers and between T1D and healthy donors, validating reproducible production. In addition, neither phenotype nor function of tolDCs was affected by repeated stimulation with inflammatory stimuli, underscoring their stability as semi-mature DCs. Furthermore, tolDCs exhibited differential DNA methylation profiles compared with inflammatory mature DCs (mDCs), and this was already largely established prior to maturation, indicating that tolDCs are locked into an immature state. Finally, approximately 80% of differentially expressed known T1D risk genes displayed a corresponding differential DNA methylome in tolDCs versus mDCs and metabolic and immune pathway genes were also differentially methylated and expressed. In summary, tolDCs are reproducible and stable clinical cell products unaffected by the T1D status of donors. The observed stable, semi-mature phenotype and function of tolDCs are exemplified by epigenetic modifications representative of immature-stage cells. Together, the authors' data provide a strong basis for the production and clinical implementation of tolDCs in the treatment of autoimmune diseases such as T1D. (C) 2020 International Society for Cell & Gene Therapy. Published by Elsevier Inc.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy

    Get PDF
    Antigen specific immunotherapy aims to tolerise patients to specific autoantigens that are responsible for the pathology of an autoimmune disease. Immune tolerance is generated in conditions where the immune response is suppressed and thus gold nanoparticles (AuNPs) are an attractive drug delivery platform due to their anti-inflammatory effects and their potential to facilitate temporal and spatial delivery of a peptide autoantigen in conjunction with pro-tolerogenic elements. In this study we have covalently attached an autoantigen, currently under clinical evaluation for the treatment of type 1 diabetes (PIC19-A3 peptide), to AuNPs to create nanoscale (<5 nm), negatively charged (−40 to −60 mV) AuNP-peptide complexes for immunotherapy. We also employ a clinically approved microneedle delivery system, MicronJet600, to facilitate minimally-invasive intradermal delivery of the nanoparticle constructs to target skin-resident antigen presenting cells, which are known to be apposite target cells for immunotherapy. The AuNP-peptide complexes remain physically stable upon extrusion through microneedles and when delivered into ex vivo human skin they are able to diffuse rapidly and widely throughout the dermis (their site of deposition) and, perhaps more surprisingly, the overlying epidermal layer. Intracellular uptake was extensive, with Langerhans cells proving to be the most efficient cells at internalising the AuNP-peptide complex (94% of the local population within the treated region of skin). In vitro studies showed that uptake of the AuNP-peptide complexes by dendritic cells reduced the capacity of these cells to activate naïve T cells. This indicator of biological functionality encourages further development of the AuNP-peptide formulation, which is now being evaluated in clinical trials

    Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    Get PDF
    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated progression of the disease. Likewise, CCL3 was negatively related to C-peptide and positively associated with the beta-cell stress marker proinsulin but increased in remitters. CCL4 associated with decreased beta-cell stress shown by negative association with proinsulin. Blockage of chemokines or antagonism of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes

    Multidimensional analyses of proinsulin peptide-specific regulatory T cells induced by tolerogenic dendritic cells

    Get PDF
    Induction of antigen-specific regulatory T cells (Tregs) in vivo is the holy grail of current immune-regulating therapies in autoimmune diseases, such as type 1 diabetes. Tolerogenic dendritic cells (tolDCs) generated from monocytes by a combined treatment with vitamin D and dexamethasone (marked by CD52hi and CD86lo expression) induce antigen-specific Tregs. We evaluated the phenotypes of these Tregs using high-dimensional mass cytometry to identify a surface-based T cell signature of tolerogenic modulation. Naïve CD4+ T cells were stimulated with tolDCs or mature inflammatory DCs pulsed with proinsulin peptide, after which the suppressive capacity, cytokine production and phenotype of stimulated T cells were analysed. TolDCs induced suppressive T cell lines that were dominated by a naïve phenotype (CD45RA+CCR7+). These naïve T cells, however, did not show suppressive capacity, but were arrested in their naïve status. T cell cultures stimulated by tolDC further contained memory-like (CD45RA-CCR7-) T cells expressing regulatory markers Lag-3, CD161 and ICOS. T cells expressing CD25lo or CD25hi were most prominent and suppressed CD4+ proliferation, while CD25hi Tregs also effectively supressed effector CD8+ T cells.We conclude that tolDCs induce antigen-specific Tregs with various phenotypes. This extends our earlier findings pointing to a functionally diverse pool of antigen-induced and specific Tregs and provides the basis for immune-monitoring in clinical trials with tolDC.Nephrolog

    IFN(sic) but not IFNa increases recognition of insulin defective ribosomal product-derived antigen to amplify islet autoimmunity

    Get PDF
    Aims/hypothesisThe inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells.MethodsSingle-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-βH1 was monitored using peptide-specific CD8 T cells.ResultsWe found that IFNγ induces the expression of the PSMB10 transcript encoding the β2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes.Conclusions/interpretationOur data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes.Nephrolog

    GPA33 is expressed on multiple human blood cell types and distinguishes CD4(+) central memory T cells with and without effector function

    Get PDF
    The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4(+) T cell compartment. Naive and CXCR5(+) regulatory T cells were GPA33(high), and naive conventional CD4(+) T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4(+) central memory T cell (Tcm) population. GPA33(+) CD4(+) Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33(-) Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4(+) T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4(+) T cell lineage.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    Long RNA sequencing and ribosome profiling of inflamed beta-cells reveal an extensive translatome landscape

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of the insulin-producing pancreatic beta -cells. Increasing evidence suggest that the beta -cells themselves contribute to their own destruction by generating neoantigens through the production of aberrant or modified proteins that escape central tolerance. We recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human beta -cells, emphasizing the participation of nonconventional translation events in autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human beta -cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from noncanonical start sites and translation initiation within long noncoding RNA. Our data underline the extreme diversity of the beta -cell translatome and may reveal new functional biomarkers for beta -cell distress, disease prediction and progression, and therapeutic intervention in T1D.Molecular Epidemiolog

    Type 1 diabetes induction in humanized mice

    Get PDF
    Transplantation and autoimmunit

    A unique immune signature in blood separates therapy-refractory from therapy-responsive acute graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (aGVHD) is an immune cell-driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b(+)CD163(+) myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCR gamma delta(+) cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3(+) T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasma-blasts, and 2 distinct CD11b(-) dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.Horizon 2020 (H2020)643580Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
    • …
    corecore