3 research outputs found

    Local above-ground persistence of vascular plants:Life-history trade-offs and environmental constraints

    No full text
    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845 long-term permanent plots in terrestrial habitats across the Netherlands. Methods: We analysed the local above-ground persistence of vascular plants in permanent plots (monitored once a year for ca. 16 year) with respect to functional traits and habitat preferences using survival statistics (Kaplan-Meier analysis and Cox' regression). These methods account for censored data and are rarely used in vegetation ecology. Results: Local above-ground persistence is determined by both functional traits (especially the ability to form long-lived clonal connections) and habitat preferences (especially nutrient requirements). Above-ground persistence is negatively related to the ability for dispersal by wind and to the ability to accumulate a long-term persistent soil seed bank ('dispersal through time') and is positively related to the ability for dispersal by water. Conclusions: Most species have a half-life expectation over 15 years. which may contribute to time lags after changes 'in habitat quality or -configuration ('extinction debt'). There is evidence for a trade-off relationship between local aboveground persistence and below-ground seed persistence, while the relationship with dispersal in space is vector specific. The rate of species turnover increases with productivity

    Global trait:environment relationships of plant communities

    No full text
    Abstract Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18
    corecore