4,347 research outputs found

    Transport properties near the Anderson transition

    Full text link
    The electronic transport properties in the presence of a temperature gradient in disordered systems near the metal-insulator transition [MIT] are considered. The d.c. conductivity σ\sigma, the thermoelectric power SS, the thermal conductivity KK and the Lorenz number L0L_0 are calculated for the three-dimensional Anderson model of localization using the Chester-Thellung-Kubo-Greenwood formulation of linear response. We show that σ\sigma, S, K and L0L_0 can be scaled to one-parameter scaling curves with a single scaling paramter kBT/∣μ−Ec/Ec∣k_BT/|{\mu-E_c}/E_c|.Comment: 4 pages, 4 EPS figures, uses annalen.cls style [included]; presented at Localization 1999, to appear in Annalen der Physik [supplement

    Phase diagram of the three-dimensional Anderson model of localization with random hopping

    Full text link
    We examine the localization properties of the three-dimensional (3D) Anderson Hamiltonian with off-diagonal disorder using the transfer-matrix method (TMM) and finite-size scaling (FSS). The nearest-neighbor hopping elements are chosen randomly according to tij∈[c−1/2,c+1/2]t_{ij} \in [c-1/2, c + 1/2]. We find that the off-diagonal disorder is not strong enough to localize all states in the spectrum in contradistinction to the usual case of diagonal disorder. Thus for any off-diagonal disorder, there exist extended states and, consequently, the TMM converges very slowly. From the TMM results we compute critical exponents of the metal-insulator transitions (MIT), the mobility edge EcE_c, and study the energy-disorder phase diagram.Comment: 4 pages, 5 EPS figures, uses annalen.cls style [included]; presented at Localization 1999, to appear in Annalen der Physik [supplement

    Thermoelectric Transport Properties in Disordered Systems Near the Anderson Transition

    Full text link
    We study the thermoelectric transport properties in the three-dimensional Anderson model of localization near the metal-insulator transition [MIT]. In particular, we investigate the dependence of the thermoelectric power S, the thermal conductivity K, and the Lorenz number L_0 on temperature T. We first calculate the T dependence of the chemical potential from the number density of electrons at the MIT using averaged density of state obtained by diagonalization. Without any additional approximation, we determine from the chemical potential the behavior of S, K and L_0 at low T as the MIT is approached. We find that the d.c. conductivity and K decrease to zero at the MIT as T -> 0 and show that S does not diverge. Both S and L_0 become temperature independent at the MIT and depend only on the critical behavior of the conductivity.Comment: 11 pages, 10 eps figures, coded with the EPJ macro package, submitted to EPJ

    Spin noise spectroscopy in GaAs

    Get PDF
    We observe the noise spectrum of electron spins in bulk GaAs by Faraday rotation noise spectroscopy. The experimental technique enables the undisturbed measurement of the electron spin dynamics in semiconductors. We measure exemplarily the electron spin relaxation time and the electron Lande g-factor in n-doped GaAs at low temperatures and find good agreement of the measured noise spectrum with an unpretentious theory based on Poisson distribution probability.Comment: 4 pages, 4 figure

    Integrable impurities for an open fermion chain

    Full text link
    Employing the graded versions of the Yang-Baxter equation and the reflection equations, we construct two kinds of integrable impurities for a small-polaron model with general open boundary conditions: (a) we shift the spectral parameter of the local Lax operator at arbitrary sites in the bulk, and (b) we embed the impurity fermion vertex at each boundary of the chain. The Hamiltonians with different types of impurity terms are given explicitly. The Bethe ansatz equations, as well as the eigenvalues of the Hamiltonians, are constructed by means of the quantum inverse scattering method. In addition, we discuss the ground-state properties in the thermodynamic limit.Comment: 20 pages, 4 figure

    Development and fabrication of bismaleimide-graphite composites

    Get PDF
    The successful fabrication of high temperature resistant composites depends mainly on the processability of the resin binder matrix. For two new bismaleimide type resins the processing of graphite fabric prepregs to composites is described. One resin coded M 751 has to be processed from N-Methylpyrrolidone, the other resin evaluated is a so-called hot melt solvent-less system. Commercial T300/3000 Graphite fabrics were used as reinforcement. The M 751 - Resin is a press grade material and laminates are therefore moulded in high pressure conditions (400 N/sq cm). The solvent-less resin system H 795 is an autoclave grade material and can be cured at 40 N/sq cm. The cure cycles for both the press grade and the autoclave grade material (Fiberite W 143 fabric prepregs) are provided and the mechanical properties of laminates at low (23 C) and high (232 C) temperatures were measured. For comparison, the neat resin flexural properties are also presented. The water absorption for the neat resins and the graphite fabric laminates after a 1000 hour period was evaluated

    Non-equilibrium transport through a disordered molecular nanowire

    Get PDF
    We investigate the non-equilibrium transport properties of a disordered molecular nanowire. The nanowire is regarded as a quasi-one-dimensional organic crystal composed of self-assembled molecules. One orbital and a single random energy are assigned to each molecule while the intermolecular coupling does not fluctuate. Consequently, electronic states are expected to be spatially localized. We consider the regime of strong localization, namely, the localization length is smaller than the length of the molecular wire. Electron-vibron interaction, taking place in each single molecule, is also taken into account. We investigate the interplay between disorder and electron-vibron interaction in response to either an applied electric bias or a temperature gradient. To this end, we calculate the electric and heat currents when the nanowire is connected to leads, using the Keldysh non-equilibrium Green's function formalism. At intermediate temperature, scattering by disorder dominates both charge and heat transport. We find that the electron-vibron interaction enhances the effect of the disorder on the transport properties due to the exponential suppression of tunneling
    • …
    corecore