373 research outputs found

    De bevaarbaarheid van de Westerschelde in 1974

    Get PDF

    Receptomics, design of a microfluidic receptor screening technology

    Get PDF
    This thesis describes the development of a G Protein-Coupled Receptor (GPCR) screening technology that combines a receptor cell array (~300 spots) with microfluidics. This technology was developed for the purpose of sensing the taste of, or active components in complex samples. GPCR activation was monitored using a genetically encoded calcium indicator (GECI) which was based on a change in Förster Resonance Energy Transfer (FRET) between two fluorescent proteins linked by a calcium binding domain which, upon binding of calcium, induces a conformational change between the fluorophores. The receptor cell arrays were created by reverse transfection of printed plasmid DNA. The arrays were assembled in a flowcell, connected to a microfluidic system, and mounted on a stereo fluorescence microscope. This setup allowed for controlled and importantly, repeated sample exposure while monitoring the changes in intracellular calcium in real-time. GPCRs play an important role in many physiological or disease-related processes. These membrane proteins have evolved to sense a wide range of molecules that can be of either exogenous or endogenous origin. Their sensing mechanisms are complex and potentially involve many cellular signalling events depending the cell type. The introductory chapter of this thesis presents a brief overview of the GPCR types and their signalling pathways with a focus on taste signalling. This chapter also places the microfluidic receptomics technology within the framework of existing receptor screening technologies. The second chapter explores the general principles, setup and characterization of the microfluidic biosensor to measure GPCR activation via imaging of [Ca2+] changes in recombinant human HEK293 cells. These cells expressed a combination of the Neurokinin 1-receptor and Cameleon YC3.6 protein as calcium indicator. Here, a stable cell line was employed for robust expression with little variation Next to GPCRs, the system was also used for the detection of transient receptor potential channel Vanilloid 1 (TRPV1) ion channel activation by means of the Cameleon YC3.6 calcium sensor as is reported in Chapter 3. This assay was performed with LCMS fractions and whole extracts of chilli pepper fruits which led to the identification of new ion channel agonists. This chapter also discusses the possibility of coupling the receptomics assay directly to an LCMS as an additional on-line bioactivity detector. The general discussion of this thesis (Chapter 7) elaborates on this topic with additional perspectives on the feasibility of coupling the two systems. Chapter 4 provides an extensive technical characterization of the preparation and measurement of reverse transfected cell arrays using fluorescent proteins. The response of the Neurokinin 1-receptor in relation to its gene dose in reverse transfection was studied, as well as response reproducibility during repeated activations. These results led to a study of bitter taste receptors in relation to sensitivity-determining parameters such as sensor type and calcium buffering (Chapter 5). This chapter aimed to enhance the sensitivity and robustness of the receptor assay and showed proof of concept with bitter receptor arrays that performed in the same range as existing state-of-the-art platforms. Such bitter taste receptor arrays may be employed for future screenings of new bitter taste agonists or modulators and the identification of bitter principles in foods. Development of software and statistical models -the linear mixed model, as presented in Chapter 6- to analyse this new type of data showed that a spot-based comparison of sequentially-tested samples yielded the most reliable data and largely eliminated inter-spot differences in signal strength. The method could also visualize receptor specific differences between samples in the presence of a simulated host cell response. A host cell response, induced by ATP, was used to show that specific bitter receptor responses from compound spikes were cumulative to the host cell response and can be retrieved from a host cell response signal by means of comparative analysis. The general discussion (Chapter 7) critically discusses the advantages and limitations of this new micro-fluidics approach and details which additional developments are needed to advance the technology further. The receptomics technology as described in this thesis is argued to be complementary to microplate screening technologies and represents a new analytical paradigm. The microfluidics aspect and overall assay size reduction are more cost efficient and allow both a high content dynamics analysis as well as the development of novel applications such as direct identification of bioactive compounds by coupling of LCMS to receptomics. All in all, this thesis presents an enabling receptor screening technology that is based on new design principles. This receptomics technology offers novel applications and has potential in the bioactivity screening of crude extracts.</p

    Using Technology to Improve Student Experience with Critique

    Get PDF
    Technology has radically changed the way educators can exchange information and interact with students. While higher education teaching systems have adapted to changes in technological innovation, the fashion design studio, organized in traditional Beaux- Arts format, remains constant in its face-to-face, active-learning experience approach. An emerging teaching format is blended learning, that involves both traditional face-to-face instruction, as well as communication via the Internet. If well-guided, an online environment used in conjunction with an existing studio class provides an alternative medium for improving communication, supporting creative collaboration and open interaction

    Dynamic Tardos Traitor Tracing Schemes

    Full text link
    We construct binary dynamic traitor tracing schemes, where the number of watermark bits needed to trace and disconnect any coalition of pirates is quadratic in the number of pirates, and logarithmic in the total number of users and the error probability. Our results improve upon results of Tassa, and our schemes have several other advantages, such as being able to generate all codewords in advance, a simple accusation method, and flexibility when the feedback from the pirate network is delayed.Comment: 13 pages, 5 figure

    Afterglow

    Get PDF
    Fitting in to the fast-paced evolution of marching band uniforms, Afterglow reimagines the traditional marching band uniform by experimenting with wearable technology, new silhouettes, and garment sustainability to create a theatrical band uniform inspired by the afterglow of the sunset. The sunset begins with pink hues infiltrating the light blue sky, and as the sun reaches the horizon, brilliant purples, pinks, yellows, and oranges glide across the sky. A frenzy of overlapping and intermingling hues soon takes over before giving way to a pink afterglow remaining in the dark sky. The sunset symbolizes the transition from day to night, revitalizing those who take the time to observe it. This look showcases the climax of the sunset, where the sun reaches the horizon and the bright colors take hold of the sky. Worn by female marchers, this uniform epitomizes the current innovation and theatrics in marching band shows

    De bevaarbaarheid van de Westerschelde in 1968

    Get PDF
    corecore