85 research outputs found

    Enhancement of multioctave dynamic range in a push-pull modulated analog photonic link

    Get PDF
    We demonstrate an analog photonic link with a high multioctave spurious-free dynamic range (SFDR) using a push-pull modulation technique of laser diodes combined with a balanced detection scheme. SFDR enhancements ranging from 5 dB to 18 dB, relative to the case of a single arm link, have been obtained in a frequency range of 2.5 GHz to 3.2 GHz

    Ring resonator-based Tunable Optical Delay Line in LPCVD Waveguide Technology

    Get PDF
    Optical circuits providing a time delay to signals modulated on optical carriers are considered important for optical communication systems and phased array antennas. A continuously tunable optical delay line is demonstrated in low-cost CMOS compatible LPCVD planar waveguide technology. The device consists of three cascaded ringresonator all-pass filters with fixed circumference of 2 cm (delay of 0.12 ns and FSR of 8.4 GHz). The measured group delay ranges from 0 ns up to 1.2 ns with a bandwidth of 500 MHz and delay ripple smaller than 1 ps, which is in accordance with the calculations

    Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    Get PDF
    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. \ud Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been fabricated in LPCVD waveguide technology.\ud It is designed with 1 input and 8 outputs, between which a binary-tree topology is used. A different number of ORRs (up to 7) are cascaded for each output.\ud In this paper, the principle of operation is explained and demonstrated by presenting measurements on the 1×8 OBFN chip

    Optical beam forming for phased-array antennas

    Get PDF
    The activities of the Telecommunication Engineering (TE) group span the communications spectrum from copper cables, optical fibres, microwaves, radio and electromagnetic compatibility. Our research concentrates on optical signal processing and networks, mobile communications, microwave techniques and radiation from ICs and PCBs [1]. A considerable (and particularly interesting) part of it is related to optical beam forming for phased array antennas, using optical ring resonators.\ud In this article the theoretical basics and practical challenges of this interesting research topic will be summarized.\u

    Phased array antenna steering using a ring resonator-based optical beam forming network

    Get PDF
    A novel beam steering mechanism for a phased array antenna receiver system is introduced. The core of the system is a ring resonator-based integrated optical beam forming network chip. Its principles are explained and demonstrated by presenting some measurement results. The system architecture around the chip is based on a combination of frequency down conversion, filter-based optical single sideband modulation and balanced coherent detection. It is proven that such an architecture has significant advantages with respect to a straightforward architecture using double sideband modulation and direct detection, namely relaxed bandwidth requirements on the optical modulators and detectors, reduced complexity and optical losses of the beam forming chip, and enhanced dynamic range

    Optical phase synchronization in coherent optical beamformers for phased array receive antennas

    Get PDF
    An optical phase synchronization system using a power feedback loop technique is experimentally demonstrated. The system allows coherent combining of signals modulated on the same optical carrier in a hybrid optical beam forming system setup

    Novel ring resonator-based optical beamformer system and experimental results

    Get PDF
    A novel squint-free, continuously tunable beamformer mechanism for a phased array antenna system is proposed. It consists of filter-based optical single-sideband suppressed-carrier modulation, a fully integrated optical beam forming network using cascades of optical ring resonators as tunable delay elements, and balanced coherent optical detection. The proposed system brings advantages in optical bandwidth requirement, system complexity, and dynamic range, without introducing the problem of beam squint or limited tuning resolution. Some experimental results are presented in order to demonstrate the feasibility of the proposed concept

    Analysis of phase noise and cnr degradation of externally generated lo signal in lnb for ku-band dvb-s systems by heterodyning two lasers

    Get PDF
    We investigate the externally generation of an LO signal by optical heterodyning, which is then distributed to each of the mixers at every antenna element of a phased array antenna used for standard DVB-S (digital Video Broadcasting-Satellite) reception system. The system1 is presented in Figure 1. The Ku-Band (10.7 GHz ~12.75 GHz) RF signal from the antenna array is amplified and then down converted to IF (950 MHz to 2150 MHz) at the mixer by a 9.75 GHz LO signal generated by optical heterodynin

    Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing

    Get PDF
    A new class of integrated optical waveguide structures is presented, based on low cost CMOS compatible LPCVD processing. This technology allows for medium and high index contrast waveguides with very low channel attenuation. The geometry is basically formed by a rectangular cross-section silicon nitride (Si3N4)(Si_{3}N_{4}) filled with and encapsulated by silicon dioxide (SiO2)(SiO_{2}). The birefringence and minimal bend radius of the waveguide is completely controlled by the geometry of the waveguide layer structures. Experiments on typical geometries will be presented, showing excellent characteristics (channel attenuation ≤0.06 dB/cm, IL ≤0.6 dB, PDL ≤0.2 dB, Bg «1 x 10310^{-3}, bend radius ≤500 μm)

    8x8 Reconfigurable quantum photonic processor based on silicon nitride waveguides

    Get PDF
    The development of large-scale optical quantum information processing circuits ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate a reconfigurable 8x8 integrated linear optical network based on silicon nitride waveguides for quantum information processing. Our processor implements a novel optical architecture enabling any arbitrary linear transformation and constitutes the largest programmable circuit reported so far on this platform. We validate a variety of photonic quantum information processing primitives, in the form of Hong-Ou-Mandel interference, bosonic coalescence/anticoalescence and high-dimensional single-photon quantum gates. We achieve fidelities that clearly demonstrate the promising future for large-scale photonic quantum information processing using low-loss silicon nitride.Comment: Added supplementary materials, extended introduction, new figures, results unchange
    corecore