3 research outputs found

    Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules

    No full text
    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron–hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode.status: publishe

    A LAPS-Based Differential Sensor for Parallelized Metabolism Monitoring of Various Bacteria

    No full text
    Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.status: publishe

    Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system

    No full text
    Applying biosensors for evaluation of the extracellular acidification of microorganisms in various biotechnological fermentation processes is on demand. An early stage detection of disturbances in the production line would avoid costly interventions related to metabolically inactive microorganisms. Furthermore, the determination of the number of living cells through cell plating procedure after cultivations is known as time- and material-consuming. In this work, a differential light-addressable potentiometric sensor (LAPS) system was developed to monitor the metabolic activity of Corynebacterium glutamicum (C. glutamicum ATCC13032) as typical microorganism in fermentation processes. In this context, the number of living cells in suspensions was directly determined utilizing the read-out principle of the LAPS system. The planar sensor surface of the LAPS design allows to fixate 3D-printed multi-chamber structures, which enables differential measurements. In this way, undesirable external influences such as pH variations of the medium and sensor signal drift can be compensated.status: publishe
    corecore