3,728 research outputs found

    Germanium, Arsenic, and Selenium Abundances in Metal-Poor Stars

    Full text link
    The elements germanium (Ge, Z=32), arsenic (As, Z=33), and selenium (Se, Z=34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 < [Fe/H] < -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources.Comment: Accepted for publication in the Astrophysical Journal. (12 pages, 5 figures

    Heavy Element Dispersion in the Metal-Poor Globular Cluster M92

    Get PDF
    Dispersion among the light elements is common in globular clusters (GCs), while dispersion among heavier elements is less common. We present detection of r-process dispersion relative to Fe in 19 red giants of the metal-poor GC M92. Using spectra obtained with the Hydra multi-object spectrograph on the WIYN Telescope at Kitt Peak National Observatory, we derive differential abundances for 21 species of 19 elements. The Fe-group elements, plus Y and Zr, are homogeneous at a level of 0.07-0.16 dex. The heavy elements La, Eu, and Ho exhibit clear star-to-star dispersion spanning 0.5-0.8 dex. The abundances of these elements are correlated with one another, and we demonstrate that they were produced by r-process nucleosynthesis. This r-process dispersion is not correlated with the dispersion in C, N, or Na in M92, indicating that r-process inhomogeneities were present in the gas throughout star formation. The r-process dispersion is similar to that previously observed in the metal-poor GC M15, but its origin in M15 or M92 is unknown at present.Comment: Accepted for publication in the Astronomical Journal (22 pages, 12 figures). v2: references update

    Detailed Abundance Analysis of the Brightest Star in Segue 2, the Least Massive Galaxy

    Get PDF
    We present the first high resolution spectroscopic observations of one red giant star in the ultra-faint dwarf galaxy Segue 2, which has the lowest total mass (including dark matter) estimated for any known galaxy. These observations were made using the MIKE spectrograph on the Magellan II Telescope at Las Campanas Observatory. We perform a standard abundance analysis of this star, SDSS J021933.13+200830.2, and present abundances of 21 species of 18 elements as well as upper limits for 25 additional species. We derive [Fe/H] = -2.9, in excellent agreement with previous estimates from medium resolution spectroscopy. Our main result is that this star bears the chemical signatures commonly found in field stars of similar metallicity. The heavy elements produced by neutron-capture reactions are present, but they are deficient at levels characteristic of stars in other ultra-faint dwarf galaxies and a few luminous dwarf galaxies. The otherwise normal abundance patterns suggest that the gas from which this star formed was enriched by metals from multiple Type II supernovae reflecting a relatively well-sampled IMF. This adds to the growing body of evidence indicating that Segue 2 may have been substantially more massive in the past.Comment: Accepted for publication in MNRAS. 13 pages, 7 figures, 3 tables, including 1 long machine-readable table availabl

    Detailed Abundances of 15 Stars in the Metal-Poor Globular Cluster NGC 4833

    Full text link
    We have observed 15 red giant stars in the relatively massive, metal-poor globular cluster NGC 4833 using the Magellan Inamori Kyocera Echelle spectrograph at Magellan. We calculate stellar parameters for each star and perform a standard abundance analysis to derive abundances of 43 species of 39 elements, including 20 elements heavier than the iron group. We derive = -2.25 +/- 0.02 from Fe I lines and = -2.19 +/- 0.013 from Fe II lines. We confirm earlier results that found no internal metallicity spread in NGC 4833, and there are no significant star-to-star abundance dispersions among any elements in the iron group (19 <= Z <= 30). We recover the usual abundance variations among the light elements C, N, O, Na, Mg, Al, and possibly Si. The heavy-element distribution reflects enrichment by r-process nucleosynthesis ([Eu/Fe] = +0.36 +/- 0.03), as found in many other metal-poor globular clusters. We investigate small star-to-star variations found among the neutron-capture elements, and we conclude that these are probably not real variations. Upper limits on the Th abundance, log epsilon (Th/Eu) < -0.47 +/- 0.09, indicate that NGC 4833, like other globular clusters where Th has been studied, did not experience a so-called "actinide boost."Comment: Accepted for publication in MNRAS. Version 2 adds final publication referenc

    A computational model for geomagnetically trapped particle shells and kinematic parameters Technical report, Oct. 1965 - Jun. 1966

    Get PDF
    Computer program to calculate geomagnetically trapped particle shell model, drift rate, and bounce path

    Antenna technology for advanced mobile communication systems

    Get PDF
    The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources

    Le Service Pédologique de Tunisie

    Get PDF
    corecore