4 research outputs found

    The Nebraska Mesonet: Technical Overview of an Automated State Weather Network

    Get PDF
    The Nebraska Mesonet was established in 1981 as one of the nation’s first automated state weather networks. ‘‘Automated’’ is defined by the nature of the observations being made and recorded by machine, as opposed to observations made and recorded manually. At the time of inception, the five observing locations were geared toward servicing agricultural production applications. The Nebraska Mesonet has grown to 69 stations (as of 2018) and is now a multipurpose environmental observing network under the Nebraska State Climate Office (NSCO). The network is composed of environmental observation stations, sited using best practices for mesoscale and microscale environment situations. Precise observations are acquired using highquality instrumentation, following manufacturer recommendations for calibrations and maintenance. Calibrations are performed in the NSCO calibration laboratory. Uses for the data include but are not limited to water management, drought monitoring, energy production, health, environmental research, animal management, and crop pest management. This paper provides a technical overview and history of the network, outlining current practices for station siting, maintenance, data quality assurance, and data utility

    Improving the calibration of silicon photodiode pyranometers

    Get PDF
    Reliable measurements of global irradiance are essential for research and practical applications. Silicon photodiode pyranometers (SiPs) offer low-cost sensors to measure direct and diffuse irradiance despite their non-uniform spectral response over the 300–1000 nm spectral range. In this study, non-adjusted linear and adjusted calibrations were applied at different times of the year to determine sources of estimated errors in global irradiance due to the two calibration approaches, calibration time, and sensor age. 16 SiPs, along with two standards, measured incident global irradiance over a 5-year period under a range of sky conditions. Sensors performed best in the months in which they were calibrated when using the linear calibration approach. With the solar zenith angle adjusted calibration approach, certain calibration months provide a defendable validation for the following 12 months [ranging an average of 13.5–17.4 W m−2 standard error (SE)], while other calibration months do not provide consistent results and sometimes result in very poor validation (31.1–242.7 W m−2 SE). Older sensors (greater than 6 years) in general become more sensitive to solar zenith angle and their response drifts over time, while newer SiPs performed better than older sensors. Calibrations which accounted for solar zenith angle effects improved global irradiance estimates for older SiPs. For the Lincoln NE location, the appropriate calibration is in spring or late summer, regardless of calibration approach. These results indicate that solar zenith angle correction is not needed for largely diffuse components under cloudy conditions, so that in the future, a “smart” calibration may be possible, where diffuse radiation fractions are known

    The Nebraska Mesonet: Technical Overview of an Automated State Weather Network

    Get PDF
    The Nebraska Mesonet was established in 1981 as one of the nation’s first automated state weather networks. ‘‘Automated’’ is defined by the nature of the observations being made and recorded by machine, as opposed to observations made and recorded manually. At the time of inception, the five observing locations were geared toward servicing agricultural production applications. The Nebraska Mesonet has grown to 69 stations (as of 2018) and is now a multipurpose environmental observing network under the Nebraska State Climate Office (NSCO). The network is composed of environmental observation stations, sited using best practices for mesoscale and microscale environment situations. Precise observations are acquired using highquality instrumentation, following manufacturer recommendations for calibrations and maintenance. Calibrations are performed in the NSCO calibration laboratory. Uses for the data include but are not limited to water management, drought monitoring, energy production, health, environmental research, animal management, and crop pest management. This paper provides a technical overview and history of the network, outlining current practices for station siting, maintenance, data quality assurance, and data utility

    Improving the calibration of silicon photodiode pyranometers

    Get PDF
    Reliable measurements of global irradiance are essential for research and practical applications. Silicon photodiode pyranometers (SiPs) offer low-cost sensors to measure direct and diffuse irradiance despite their non-uniform spectral response over the 300–1000 nm spectral range. In this study, non-adjusted linear and adjusted calibrations were applied at different times of the year to determine sources of estimated errors in global irradiance due to the two calibration approaches, calibration time, and sensor age. 16 SiPs, along with two standards, measured incident global irradiance over a 5-year period under a range of sky conditions. Sensors performed best in the months in which they were calibrated when using the linear calibration approach. With the solar zenith angle adjusted calibration approach, certain calibration months provide a defendable validation for the following 12 months [ranging an average of 13.5–17.4 W m−2 standard error (SE)], while other calibration months do not provide consistent results and sometimes result in very poor validation (31.1–242.7 W m−2 SE). Older sensors (greater than 6 years) in general become more sensitive to solar zenith angle and their response drifts over time, while newer SiPs performed better than older sensors. Calibrations which accounted for solar zenith angle effects improved global irradiance estimates for older SiPs. For the Lincoln NE location, the appropriate calibration is in spring or late summer, regardless of calibration approach. These results indicate that solar zenith angle correction is not needed for largely diffuse components under cloudy conditions, so that in the future, a “smart” calibration may be possible, where diffuse radiation fractions are known
    corecore