8 research outputs found

    MicroRNAs in B cell development and malignancy

    Get PDF
    MicroRNAs are small RNA molecules that regulate gene expression and play critical roles in B cell development and malignancy. miRNA expression is important globally, as B cell specific knockouts of Dicer show profound defects in B cell development; and is also critical at the level of specific miRNAs. In this review, we discuss miRNAs that are involved in normal B cell development in the bone marrow and during B cell activation and terminal differentiation in the periphery. Next, we turn to miRNAs that are dysregulated during diseases of B cells, including malignant diseases and autoimmunity. Further study of miRNAs and their targets will lead to a better understanding of B cell development, and should also lead to the development of novel therapeutic strategies against B cell diseases

    The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia

    Get PDF
    Abstract Background Long non-coding RNAs (lncRNAs) play a variety of cellular roles, including regulation of transcription and translation, leading to alterations in gene expression. Some lncRNAs modulate the expression of chromosomally adjacent genes. Here, we assess the roles of the lncRNA CASC15 in regulation of a chromosomally nearby gene, SOX4, and its function in RUNX1/AML translocated leukemia. Results CASC15 is a conserved lncRNA that was upregulated in pediatric B-acute lymphoblastic leukemia (B-ALL) with t (12; 21) as well as pediatric acute myeloid leukemia (AML) with t (8; 21), both of which are associated with relatively better prognosis. Enforced expression of CASC15 led to a myeloid bias in development, and overall, decreased engraftment and colony formation. At the cellular level, CASC15 regulated cellular survival, proliferation, and the expression of its chromosomally adjacent gene, SOX4. Differentially regulated genes following CASC15 knockdown were enriched for predicted transcriptional targets of the Yin and Yang-1 (YY1) transcription factor. Interestingly, we found that CASC15 enhances YY1-mediated regulation of the SOX4 promoter. Conclusions Our findings represent the first characterization of this CASC15 in RUNX1-translocated leukemia, and point towards a mechanistic basis for its action

    MicroRNAs in B cell development and malignancy

    No full text
    Abstract MicroRNAs are small RNA molecules that regulate gene expression and play critical roles in B cell development and malignancy. miRNA expression is important globally, as B cell specific knockouts of Dicer show profound defects in B cell development; and is also critical at the level of specific miRNAs. In this review, we discuss miRNAs that are involved in normal B cell development in the bone marrow and during B cell activation and terminal differentiation in the periphery. Next, we turn to miRNAs that are dysregulated during diseases of B cells, including malignant diseases and autoimmunity. Further study of miRNAs and their targets will lead to a better understanding of B cell development, and should also lead to the development of novel therapeutic strategies against B cell diseases.</p

    MicroRNA-146a modulates B-cell oncogenesis by regulating Egr1.

    No full text
    miR-146a is a NF-κB induced microRNA that serves as a feedback regulator of this critical pathway. In mice, deficiency of miR-146a results in hematolymphoid cancer at advanced ages as a consequence of constitutive NF-κB activity. In this study, we queried whether the deficiency of miR-146a contributes to B-cell oncogenesis. Combining miR-146a deficiency with transgenic expression of c-Myc led to the development of highly aggressive B-cell malignancies. Mice transgenic for c-Myc and deficient for miR-146a were characterized by significantly shortened survival, increased lymph node involvement, differential involvement of the spleen and a mature B-cell phenotype. High-throughput sequencing of the tumors revealed significant dysregulation of approximately 250 genes. Amongst these, the transcription factor Egr1 was consistently upregulated in mice deficient for miR-146a. Interestingly, transcriptional targets of Egr1 were enriched in both the high-throughput dataset and in a larger set of miR-146a-deficient tumors. miR-146a overexpression led to downregulation of Egr1 and downstream targets with concomitant decrease in cell growth. Direct targeting of the human EGR1 by miR-146a was seen by luciferase assay. Together our findings illuminate a bona fide role for miR-146a in the modulation of B-cell oncogenesis and reveal the importance of understanding microRNA function in a cell- and disease-specific context
    corecore