18,356 research outputs found
Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems
We show that a pulsed stimulus can be used to generate many-body quantum
coherences in light-matter systems of general size. Specifically, we calculate
the exact real-time evolution of a driven, generic out-of-equilibrium system
comprising an arbitrary number N qubits coupled to a global boson field. A
novel form of dynamically-driven quantum coherence emerges for general N and
without having to access the empirically challenging strong-coupling regime.
Its properties depend on the speed of the changes in the stimulus.
Non-classicalities arise within each subsystem that have eluded previous
analyses. Our findings show robustness to losses and noise, and have potential
functional implications at the systems level for a variety of nanosystems,
including collections of N atoms, molecules, spins, or superconducting qubits
in cavities -- and possibly even vibration-enhanced light harvesting processes
in macromolecules.Comment: 9 pages, 4 figure
Functional advantages offered by many-body coherences in biochemical systems
Quantum coherence phenomena driven by electronic-vibrational (vibronic)
interactions, are being reported in many pulse (e.g. laser) driven chemical and
biophysical systems. But what systems-level advantage(s) do such many-body
coherences offer to future technologies? We address this question for pulsed
systems of general size N, akin to the LHCII aggregates found in green plants.
We show that external pulses generate vibronic states containing particular
multipartite entanglements, and that such collective vibronic states increase
the excitonic transfer efficiency. The strength of these many-body coherences
and their robustness to decoherence, increase with aggregate size N and do not
require strong electronic-vibrational coupling. The implications for energy and
information transport are discussed.Comment: arXiv admin note: text overlap with arXiv:1706.0776
Multiplicity, Disks and Jets in the NGC 2071 Star-Forming Region
We present centimeter and millimeter observations of the NGC 2071
star-forming region performed with the VLA and CARMA. We detected counterparts
at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and
VLA 1. All these sources show SEDs dominated by free-free thermal emission at
cm wavelengths, and thermal dust emission at mm wavelengths, suggesting that
all of them are associated with YSOs. IRS 1 shows a complex morphology at 3.6
cm, with changes in the direction of its elongation. We discuss two possible
explanations to this morphology: the result of changes in the direction of a
jet due to interactions with a dense ambient medium, or that we are actually
observing the superposition of two jets arising from two components of a binary
system. Higher angular resolution observations at 1.3 cm support the second
possibility, since a double source is inferred at this wavelength. IRS 3 shows
a clear jet-like morphology at 3.6 cm. Over a time-span of four years, we
observed changes in the morphology of this source that we interpret as due to
ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is
angularly resolved, with a deconvolved size (FWHM) of ~120 AU, and seems to be
tracing a dusty circumstellar disk perpendicular to the radio jet. An
irradiated accretion disk model around an intermediate-mass YSO can account for
the observed SED and spatial intensity profile at 3 mm, supporting this
interpretation.Comment: Accepted by The Astrophysical Journa
Evolution of Conversations in the Age of Email Overload
Email is a ubiquitous communications tool in the workplace and plays an
important role in social interactions. Previous studies of email were largely
based on surveys and limited to relatively small populations of email users
within organizations. In this paper, we report results of a large-scale study
of more than 2 million users exchanging 16 billion emails over several months.
We quantitatively characterize the replying behavior in conversations within
pairs of users. In particular, we study the time it takes the user to reply to
a received message and the length of the reply sent. We consider a variety of
factors that affect the reply time and length, such as the stage of the
conversation, user demographics, and use of portable devices. In addition, we
study how increasing load affects emailing behavior. We find that as users
receive more email messages in a day, they reply to a smaller fraction of them,
using shorter replies. However, their responsiveness remains intact, and they
may even reply to emails faster. Finally, we predict the time to reply, length
of reply, and whether the reply ends a conversation. We demonstrate
considerable improvement over the baseline in all three prediction tasks,
showing the significant role that the factors that we uncover play, in
determining replying behavior. We rank these factors based on their predictive
power. Our findings have important implications for understanding human
behavior and designing better email management applications for tasks like
ranking unread emails.Comment: 11 page, 24th International World Wide Web Conferenc
- …
