10 research outputs found
The Primordial Inflation Polarization Explorer (PIPER)
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne
cosmic microwave background (CMB) polarimeter designed to search for evidence
of inflation by measuring the large-angular scale CMB polarization signal.
BICEP2 recently reported a detection of B-mode power corresponding to the
tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is
caused by inflationary gravitational waves (IGWs), then there should be a
corresponding increase in B-mode power on angular scales larger than 18
degrees. PIPER is currently the only suborbital instrument capable of fully
testing and extending the BICEP2 results by measuring the B-mode power spectrum
on angular scales = ~0.6 deg to 90 deg, covering both the reionization
bump and recombination peak, with sensitivity to measure the tensor-to-scalar
ratio down to r = 0.007, and four frequency bands to distinguish foregrounds.
PIPER will accomplish this by mapping 85% of the sky in four frequency bands
(200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from
the northern and southern hemispheres. The instrument has background-limited
sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal
onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor
(TES) bolometers held at 140 mK. Polarization sensitivity and systematic
control are provided by front-end Variable-delay Polarization Modulators
(VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow
PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each
pointing. We describe the PIPER instrument and progress towards its first
flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
The Primordial Inflation Polarization Explorer (PIPER): Current Status and Performance of the First Flight
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the CMB at large angular scales. It will map 85% of the sky over a series of conventional balloon flights from the Northern and Southern hemispheres, measuring the B-mode polarization power spectrumover a range of multipoles from 2-300 covering both the reionization bump and the recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007. PIPER will observe in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds. The instrument has background-limited sensitivity provided by fully cryogenic (1.7 K) optics focusing the sky signal onto kilo-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 100 mK. Polarization sensitivity and systematiccontrol are provided by front-end Variable-delay Polarization Modulators (VPMs). PIPER had its engineering flight in October 2017 from Fort Sumner, New Mexico. This papers outlines the major components in the PIPER system discussing the conceptual design as well as specific choices made for PIPER. We also report on the results of the engineering flight, looking at the functionality of the payload systems, particularly VPM, as well as pointing out areas of improvement
Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a
balloon-borne far-infrared telescope that will survey star formation history
over cosmological time scales to improve our understanding of why the star
formation rate declined at redshift z < 2, despite continued clustering of dark
matter. Specifically,EXCLAIM will map the emission of redshifted carbon
monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z
< 3.5, following an innovative approach known as intensity mapping. Intensity
mapping measures the statistics of brightness fluctuations of cumulative line
emissions instead of detecting individual galaxies, thus enabling a blind,
complete census of the emitting gas. To detect this emission unambiguously,
EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM
mission uses a cryogenic design to cool the telescope optics to approximately
1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on
the sky from the linear regime up to shot noise-dominated scales. The telescope
optical elements couple to six {\mu}-Spec spectrometer modules, operating over
a 420-540 GHz frequency band with a spectral resolution of 512 and featuring
microwave kinetic inductance detectors. A Radio Frequency System-on-Chip
(RFSoC) reads out the detectors in the baseline design. The cryogenic telescope
and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral
windows of low emission in the upper atmosphere. Here, an overview of the
mission design and development status since the start of the EXCLAIM project in
early 2019 is presented.Comment: SPIE Astronomical Telescopes + Instrumentation. arXiv admin note:
substantial text overlap with arXiv:1912.0711
The Primordial Inflation Polarization ExploreR continuous adiabatic demagnetization refrigerator
The Primordial Inflation Polarization ExploreR (PIPER) uses a Continuous Adiabatic Demagnetization Refrigerator (CADR) to cool its detectors. The CADR consists of four independent stages with adjacent stages connected by gas gap (GG) or superconducting (SC) heat switches. The three warm stages cycle to transfer heat from the 100 mK detector package to the 1.5 K liquid helium bath. The coldest stage maintains a continuous temperature of 100 mK for the detector package with 10 uW cooling power. We describe the mechanical, electrical, and software design of the CADR and present recent results
The Primordial Inflation Polarization Explorer (PIPER)
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the gravitational wave signature of primordial inflation through its distinctive imprint on the polarization of the cosmic microwave background. PIPER combines cold (1.5 K) optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. A series of flights alternating between northern and southern hemisphere launch sites will produce maps in Stokes I, Q, U, and V parameters at frequencies 200, 270, 350, and 600 GHz (wavelengths 1500, 1100, 850, and 500 μm) covering 85% of the sky. The high sky coverage allows measurement of the primordial B-mode signal in the `reionization bump" at multipole moments l < 10 where the primordial signal may best be distinguished from the cosmological lensing foreground. We describe the PIPER instrument and discuss the current status and expected science returns from the mission
How does a simulated soccer match affect regional differences in biceps femoris muscle architecture?
Soccer is played by thousands of athletes across the globe and its participation increases the overall risk of injury, in particular, hamstring strain injuries (HSI). Biceps femoris (BF) has been shown to be involved the in 5 out of 6 HSI cases and risk factors including fatigue and short BF fascicle length (FL) have been identified. Furthermore, previous studies suggest that different muscle regions may undergo different strains during dynamic tasks, which could contribute to injury risk. The primary aim of this study was to evaluate the effects of a soccer match on regional differences in the BF muscle architecture. A secondary aim was to assess the reliability of the extended field of view (EFOV) 2D ultrasound imaging to measure muscle architecture parameters.
Muscle architecture was assessed, using ultrasound, in 9 amateur soccer players and 5 physically active men, before and after a 45 minutes soccer specific fatigue protocol (SAFT)or 20 mintues of rest, respectively.
Significant muscle architecture changes were found after SAFT, however, these were smaller than the minimal detectable change associated with the scanning method. No correlations were found between force reductions and muscle architecture changes. Good reliability was found for FL measurements but poor reliability was found for pennation angle and muscle thickness.
Muscle architecture changes after 45 minutes of a football match may not be a mechanism to
explain the increased HSI rates. Furthermore, when using EFOV ultrasound, care must be
taken when interpreting statistically significant results, since these can be below the minimal detectable change or not reliable for all the parameters
Labour markets with turnover costs and fixed wage contracts -a general equilibrium model
SIGLEAvailable from British Library Document Supply Centre-DSC:3597.937(9706) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Characterization of Kilopixel TES detector arrays for PIPER
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas
Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey galactic formation history over cosmological time scales with redshifts between 0 and 3.5. EXCLAIM will measure the statistics of brightness fluctuations of redshifted cumulative carbon monoxide and singly ionized carbon line emissions, following an intensity mapping approach. EXCLAIM will couple all-cryogenic optical elements to six μ-Spec spectrometer modules, operating at 420-540 GHz with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. Here, we present an overview of the mission and its development status
EXCLAIM: the EXperiment for cryogenic large-aperture intensity mapping
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) will constrain star formation over cosmic time by carrying out a blind and complete census of redshifted carbon monoxide (CO) and ionized carbon ([CII]) emission in cross-correlation with galaxy survey data in redshift windows from the present to z=3.5 with a fully cryogenic, balloon-borne telescope. EXCLAIM will carry out extragalactic and Galactic surveys in a conventional balloon flight planned for 2023. EXCLAIM will be the first instrument to deploy µ-Spec silicon integrated spectrometers with a spectral resolving power R=512 covering 420-540 GHz. We summarize the design, science goals, and status of EXCLAIM